Click Here to see what neutrinos look like in NOvA,
or scroll down to see live data streaming from both Far and Near NOvA detectors (most of which is from cosmic rays).

The Far Detector at Ash River

NOvA Far Detector Live Event Image
The event display from the NOvA Far Detector. This image is live data (refreshes every 15 seconds, unless the detector's not taking data for some reason). The top large rectangle is the view from above, the bottom the view from the side: here's an example of how this maps onto a 3D detector. The NuMI beam from Fermilab is coming in from the right of the picture. Each pixel in these views is one long (15.6m), thin (4x6cm) PVC cell filled with mineral oil. A "lit" pixel is one where a charged particle crossed that cell, making a flash of light, color-coded by time (the lower-left "t(μsec)" graph). This "time" graph shows how many such hits happened at which time. The colorful displays are a 500μs long window of time, mostly showing long straight tracks from cosmic ray muons: about 40 in any given 500μs time window. The mostly blue, less busy displays are shorter (50-100μs) triggers looking for specific patterns, such as energetic showers, potential magnetic monopoles, or atmospheric neutrinos. NuMI beam Neutrinos hitting the detector and making something we can see are far more rare, only a few per week!

The Near Detector at Fermilab

NOvA Near Detector Live Event Image
The event display from the NOvA Near Detector. This image is live data (refreshes every 15 seconds, unless the detector is not taking data or the beam is off). The top large rectangle is the view from above, the bottom the view from the side. The NuMI beam from Fermilab is coming in from the right of the picture and other particles cross the detector in different directions. Each pixel in these views is one PVC cell filled with mineral oil. A "lit" pixel is one where a charged particle crossed that cell, making a flash of light, color-coded by "q(ADC)" or "charge": if a particle dumps more energy, it makes more light and thus more charge on our photosensors. The lower-left "t(μsec)" graph shows how many such hits happened at which time: this is usually a window of time 50 microseconds long around cosmic rays or 500 microseconds long around when the NuMI beam fired. The Near Detector is 100m underground, greatly reducing the number of downgoing cosmic rays, and it is close to the beam source, so the neutrino intensity is much higher than at the Far Detector. The Near Detector, being so close to the beam, has multiple neutrino interactions per beam spill: you can see the resulting particles spraying from right to left. When the neutrino beam is off (which is true now, for Fermilab's summer shutdown), the few cosmic rays which make it 100m underground will be visible on this display.

Video Links

A time-lapse video of the detector construction
Building the first block of the detector
Exploring Neutrino Mysteries
NOvA: Building a Next Generation Neutrino Experiment
Detecting Neutrinos with the NOvA Detector
A longer "Neutrinos and the NOvA Detector" documentary, in four parts: 1,2,3,4.

Follow NOvA on social media

Follow NOvA on Facebook Follow NOvA on Twitter Follow NOvA on YouTube Follow NOvA on Instagram

For comments and questions on this page specifically, email the page maintainer. For general discussion with the collaboration as a whole, try the social media links above!

Auto-refresh: On