BSKLNBaseRESPXSec2014.cxx
Go to the documentation of this file.
1 //____________________________________________________________________________
2 /*
3  Copyright (c) 2003-2019, The GENIE Collaboration
4  For the full text of the license visit http://copyright.genie-mc.org
5  or see $GENIE/LICENSE
6 
7  Author: Costas Andreopoulos <costas.andreopoulos \at stfc.ac.uk>
8  University of Liverpool & STFC Rutherford Appleton Lab
9 
10  Afroditi Papadopoulou <apapadop \at mit.edu>
11  Massachusetts Institute of Technology
12 
13  Adi Ashkenazi <adishka \at gmail.com>
14  Massachusetts Institute of Technology
15 
16  @ July 4, 2018 - Afroditi Papadopoulou
17  For electromagnetic (EM) interactions, the weak g2 was still used for the
18  calculation of the helicity amplitude. Fixed by replacing with the correct EM g2
19 
20 */
21 //____________________________________________________________________________
22 
23 #include <TMath.h>
24 #include <TSystem.h>
25 
40 #include "Framework/Utils/Range1.h"
41 #include "Framework/Utils/BWFunc.h"
49 
50 using namespace genie;
51 using namespace genie::constants;
52 
53 //____________________________________________________________________________
55 XSecAlgorithmI(name)
56 {
57 
58 }
59 //____________________________________________________________________________
61 XSecAlgorithmI(name, config)
62 {
63 
64 }
65 //____________________________________________________________________________
67 {
68 
69 }
70 //____________________________________________________________________________
72  const Interaction * interaction, KinePhaseSpace_t kps) const
73 {
74  if(! this -> ValidProcess (interaction) ) return 0.;
75  if(! this -> ValidKinematics (interaction) ) return 0.;
76 
77  const InitialState & init_state = interaction -> InitState();
78  const ProcessInfo & proc_info = interaction -> ProcInfo();
79  const Target & target = init_state.Tgt();
80 
81  // Get kinematical parameters
82  const Kinematics & kinematics = interaction -> Kine();
83  double W = kinematics.W();
84  double q2 = kinematics.q2();
85  double costh = kinematics.FSLeptonP4().CosTheta();
86 
87  // Under the DIS/RES joining scheme, xsec(RES)=0 for W>=Wcut
88  if(fUsingDisResJoin) {
89  if(W>=fWcut) {
90 #ifdef __GENIE_LOW_LEVEL_MESG_ENABLED__
91  LOG("BSKLNBaseRESPXSec2014", pDEBUG)
92  << "RES/DIS Join Scheme: XSec[RES, W=" << W
93  << " >= Wcut=" << fWcut << "] = 0";
94 #endif
95  return 0;
96  }
97  }
98 
99  // Get the input baryon resonance
100  Resonance_t resonance = interaction->ExclTag().Resonance();
101  string resname = utils::res::AsString(resonance);
102  bool is_delta = utils::res::IsDelta (resonance);
103 
104  // Get the neutrino, hit nucleon & weak current
105  int nucpdgc = target.HitNucPdg();
106  int probepdgc = init_state.ProbePdg();
107  bool is_nu = pdg::IsNeutrino (probepdgc);
108  bool is_nubar = pdg::IsAntiNeutrino (probepdgc);
109  bool is_lplus = pdg::IsPosChargedLepton (probepdgc);
110  bool is_lminus = pdg::IsNegChargedLepton (probepdgc);
111  bool is_p = pdg::IsProton (nucpdgc);
112  bool is_n = pdg::IsNeutron (nucpdgc);
113  bool is_CC = proc_info.IsWeakCC();
114  bool is_NC = proc_info.IsWeakNC();
115  bool is_EM = proc_info.IsEM();
116 
117  // bool new_GV = fGA; //JN
118  // bool new_GA = fGV; //JN
119 
120 
121  if(is_CC && !is_delta) {
122  if((is_nu && is_p) || (is_nubar && is_n)) return 0;
123  }
124 
125  // Get baryon resonance parameters
126  int IR = utils::res::ResonanceIndex (resonance);
127  int LR = utils::res::OrbitalAngularMom (resonance);
128  double MR = utils::res::Mass (resonance);
129  double WR = utils::res::Width (resonance);
131 
132  // Following NeuGEN, avoid problems with underlying unphysical
133  // model assumptions by restricting the allowed W phase space
134  // around the resonance peak
135  if (fNormBW) {
136  if (W > MR + fN0ResMaxNWidths * WR && IR==0) return 0.;
137  else if (W > MR + fN2ResMaxNWidths * WR && IR==2) return 0.;
138  else if (W > MR + fGnResMaxNWidths * WR) return 0.;
139  }
140 
141  // Compute auxiliary & kinematical factors
142  double E = init_state.ProbeE(kRfHitNucRest);
143  double Mnuc = target.HitNucMass();
144  double W2 = TMath::Power(W, 2);
145  double Mnuc2 = TMath::Power(Mnuc, 2);
146  double k = 0.5 * (W2 - Mnuc2)/Mnuc;
147  double v = k - 0.5 * q2/Mnuc;
148  double v2 = TMath::Power(v, 2);
149  double Q2 = v2 - q2;
150  double Q = TMath::Sqrt(Q2);
151  double Eprime = E - v;
152  double U = 0.5 * (E + Eprime + Q) / E;
153  double V = 0.5 * (E + Eprime - Q) / E;
154  double U2 = TMath::Power(U, 2);
155  double V2 = TMath::Power(V, 2);
156  double UV = U*V;
157 
158 
159  //JN parameter from the KUZMIN et al.
160 
161  // bool is_RS = true;
162  bool is_KLN = false;
163  if(fKLN && is_CC) is_KLN=true;
164 
165  bool is_BRS = false;
166  if(fBRS && is_CC) is_BRS=true;
167 
168  double ml = interaction->FSPrimLepton()->Mass();
169  double Pl = TMath::Sqrt(Eprime*Eprime - ml*ml);
170 
171  double vstar = (Mnuc*v + q2)/W; //missing W
172  double Qstar = TMath::Sqrt(-q2 + vstar*vstar);
173  double sqrtq2 = TMath::Sqrt(-q2);
174  double a = 1. + 0.5*(W2-q2+Mnuc2)/Mnuc/W;
175 
176  double KNL_Alambda_plus = 0;
177  double KNL_Alambda_minus = 0;
178  double KNL_j0_plus = 0;
179  double KNL_j0_minus = 0;
180  double KNL_jx_plus = 0;
181  double KNL_jx_minus = 0;
182  double KNL_jy_plus = 0;
183  double KNL_jy_minus = 0;
184  double KNL_jz_plus = 0;
185  double KNL_jz_minus = 0;
186  double KNL_Qstar_plus =0;
187  double KNL_Qstar_minus =0;
188 
189  double KNL_K = Q/E/TMath::Sqrt(2*(-q2));
190 
191  double KNL_cL_plus = 0;
192  double KNL_cL_minus = 0;
193 
194  double KNL_cR_plus = 0;
195  double KNL_cR_minus = 0;
196 
197  double KNL_cS_plus = 0;
198  double KNL_cS_minus = 0;
199 
200  double KNL_vstar_plus = 0;
201  double KNL_vstar_minus = 0;
202 
203  if(is_CC && (is_KLN || is_BRS)){
204 
205  LOG("BSKLNBaseRESPXSec2014",pINFO) "costh1="<<costh;
206  costh = (q2 - ml*ml + 2.*E*Eprime)/2./E/Pl;
207  //ml=0;
208  LOG("BSKLNBaseRESPXSec2014",pINFO) "q2="<<q2<< "m2="<<ml*ml<<" 2.*E*Eprime="<<2.*E*Eprime<<" nom="<< (q2 - ml*ml + 2.*E*Eprime)<<" den="<<2.*E*Pl;
209  LOG("BSKLNBaseRESPXSec2014",pINFO) "costh2="<<costh;
210 
211  KNL_Alambda_plus = TMath::Sqrt(E*(Eprime - Pl));
212  KNL_Alambda_minus = TMath::Sqrt(E*(Eprime + Pl));
213  LOG("BSKLNBaseRESPXSec2014",pINFO)
214  << "\n+++++++++++++++++++++++ \n"
215  << "E="<<E << " K= "<<KNL_K << "\n"
216  << "El="<<Eprime<<" Pl="<<Pl<<" ml="<<ml << "\n"
217  << "W="<<W<<" Q="<<Q<<" q2="<<q2 << "\n"
218  << "A-="<<KNL_Alambda_minus<<" A+="<<KNL_Alambda_plus << "\n"
219  << "xxxxxxxxxxxxxxxxxxxxxxx";
220 
221  KNL_j0_plus = KNL_Alambda_plus /W * TMath::Sqrt(1 - costh) * (Mnuc - Eprime - Pl);
222  KNL_j0_minus = KNL_Alambda_minus/W * TMath::Sqrt(1 + costh) * (Mnuc - Eprime + Pl);
223 
224  KNL_jx_plus = KNL_Alambda_plus/ Q * TMath::Sqrt(1 + costh) * (Pl - E);
225  KNL_jx_minus = KNL_Alambda_minus/Q * TMath::Sqrt(1 - costh) * (Pl + E);
226 
227  KNL_jy_plus = KNL_Alambda_plus * TMath::Sqrt(1 + costh);
228  KNL_jy_minus = -KNL_Alambda_minus * TMath::Sqrt(1 - costh);
229 
230  KNL_jz_plus = KNL_Alambda_plus /W/Q * TMath::Sqrt(1 - costh) * ( (E + Pl)*(Mnuc -Eprime) + Pl*( E + 2*E*costh -Pl) );
231  KNL_jz_minus = KNL_Alambda_minus/W/Q * TMath::Sqrt(1 + costh) * ( (E - Pl)*(Mnuc -Eprime) + Pl*( -E + 2*E*costh -Pl) );
232 
233  if (is_nu || is_lminus) {
234  KNL_Qstar_plus = sqrtq2 * KNL_j0_plus / TMath::Sqrt(TMath::Abs(KNL_j0_plus*KNL_j0_plus - KNL_jz_plus*KNL_jz_plus) );
235  KNL_Qstar_minus = sqrtq2 * KNL_j0_minus / TMath::Sqrt(TMath::Abs(KNL_j0_minus*KNL_j0_minus - KNL_jz_minus*KNL_jz_minus) );
236  }
237 
238  else if (is_nubar || is_lplus){
239  KNL_Qstar_plus = sqrtq2 * KNL_j0_minus / TMath::Sqrt(TMath::Abs(KNL_j0_minus*KNL_j0_minus - KNL_jz_minus*KNL_jz_minus) );
240  KNL_Qstar_minus = sqrtq2 * KNL_j0_plus / TMath::Sqrt(TMath::Abs(KNL_j0_plus*KNL_j0_plus - KNL_jz_plus*KNL_jz_plus) );
241  }
242 
243  if (is_nu || is_lminus) {
244  KNL_vstar_plus = sqrtq2 * KNL_jz_plus / TMath::Sqrt(TMath::Abs(KNL_j0_plus*KNL_j0_plus - KNL_jz_plus*KNL_jz_plus) );
245  KNL_vstar_minus = sqrtq2 * KNL_jz_minus / TMath::Sqrt(TMath::Abs(KNL_j0_minus*KNL_j0_minus - KNL_jz_minus*KNL_jz_minus) );
246  }
247  else if (is_nubar || is_lplus) {
248  KNL_vstar_minus = sqrtq2 * KNL_jz_plus / TMath::Sqrt(TMath::Abs(KNL_j0_plus*KNL_j0_plus - KNL_jz_plus*KNL_jz_plus) );
249  KNL_vstar_plus = sqrtq2 * KNL_jz_minus / TMath::Sqrt(TMath::Abs(KNL_j0_minus*KNL_j0_minus - KNL_jz_minus*KNL_jz_minus) );
250  }
251 
252  if(is_nu || is_lminus){
253  KNL_cL_plus = TMath::Sqrt(0.5)* KNL_K * (KNL_jx_plus - KNL_jy_plus);
254  KNL_cL_minus = TMath::Sqrt(0.5)* KNL_K * (KNL_jx_minus - KNL_jy_minus);
255 
256  KNL_cR_plus = TMath::Sqrt(0.5)* KNL_K * (KNL_jx_plus + KNL_jy_plus);
257  KNL_cR_minus = TMath::Sqrt(0.5)* KNL_K * (KNL_jx_minus + KNL_jy_minus);
258 
259  KNL_cS_plus = KNL_K * TMath::Sqrt(TMath::Abs(KNL_j0_plus *KNL_j0_plus - KNL_jz_plus *KNL_jz_plus ) );
260  KNL_cS_minus = KNL_K * TMath::Sqrt(TMath::Abs(KNL_j0_minus*KNL_j0_minus - KNL_jz_minus*KNL_jz_minus) );
261  }
262 
263  if (is_nubar || is_lplus) {
264  KNL_cL_plus = 1 * TMath::Sqrt(0.5)* KNL_K * (KNL_jx_minus + KNL_jy_minus);
265  KNL_cL_minus = -1 * TMath::Sqrt(0.5)* KNL_K * (KNL_jx_plus + KNL_jy_plus);
266 
267  KNL_cR_plus = 1 * TMath::Sqrt(0.5)* KNL_K * (KNL_jx_minus - KNL_jy_minus);
268  KNL_cR_minus = -1 * TMath::Sqrt(0.5)* KNL_K * (KNL_jx_plus - KNL_jy_plus);
269 
270  KNL_cS_plus = -1 * KNL_K * TMath::Sqrt(TMath::Abs(KNL_j0_minus*KNL_j0_minus - KNL_jz_minus*KNL_jz_minus) );
271  KNL_cS_minus = 1 * KNL_K * TMath::Sqrt(TMath::Abs(KNL_j0_plus*KNL_j0_plus - KNL_jz_plus*KNL_jz_plus) );
272  }
273  }
274 
275  LOG("BSKLNBaseRESPXSec2014",pINFO) <<"j0-="<<KNL_j0_minus<<" j0+="<<KNL_j0_plus;
276  LOG("BSKLNBaseRESPXSec2014",pINFO) <<"jx-="<<KNL_jx_minus<<" jx+="<<KNL_jx_plus;
277  LOG("BSKLNBaseRESPXSec2014",pINFO) <<"jy-="<<KNL_jy_minus<<" jy+="<<KNL_jy_plus;
278  LOG("BSKLNBaseRESPXSec2014",pINFO) <<"jz-="<<KNL_jz_minus<<" jz+="<<KNL_jz_plus;
279 
280  LOG("BSKLNBaseRESPXSec2014",pINFO) "sqrt2="<<sqrtq2<<" jz+=:"<<KNL_jz_plus<<" j0+="<<KNL_j0_plus<<" denom="<<TMath::Sqrt(TMath::Abs(KNL_j0_plus*KNL_j0_plus - KNL_jz_plus*KNL_jz_plus) );
281 
282  LOG("BSKLNBaseRESPXSec2014",pINFO) <<"vstar-="<<KNL_vstar_minus<<" vstar+="<<KNL_vstar_plus;
283  LOG("BSKLNBaseRESPXSec2014",pINFO) <<"Qstar-="<<KNL_Qstar_minus<<" Qstar+="<<KNL_Qstar_plus;
284 
285 #ifdef __GENIE_LOW_LEVEL_MESG_ENABLED__
286  LOG("BSKLNBaseRESPXSec2014", pDEBUG)
287  << "Kinematical params V = " << V << ", U = " << U;
288 #endif
289 
290  // Calculate the Feynman-Kislinger-Ravndall parameters
291 
292  double Go = TMath::Power(1 - 0.25 * q2/Mnuc2, 0.5-IR);
293  double GV = Go * TMath::Power( 1./(1-q2/fMv2), 2);
294  double GA = Go * TMath::Power( 1./(1-q2/fMa2), 2);
295 
296  if(fGV){
297 
298  LOG("BSKLNBaseRESPXSec2014",pDEBUG) <<"Using new GV";
299  double CV0 = 1./(1-q2/fMv2/4.);
300  double CV3 = 2.13 * CV0 * TMath::Power( 1-q2/fMv2,-2);
301  double CV4 = -1.51 * CV0 * TMath::Power( 1-q2/fMv2,-2);
302  double CV5 = 0.48 * CV0 * TMath::Power( 1-q2/fMv2/0.766, -2);
303 
304  double GV3 = 0.5 / TMath::Sqrt(3) * ( CV3 * (W + Mnuc)/Mnuc
305  + CV4 * (W2 + q2 -Mnuc2)/2./Mnuc2
306  + CV5 * (W2 - q2 -Mnuc2)/2./Mnuc2 );
307 
308  double GV1 = - 0.5 / TMath::Sqrt(3) * ( CV3 * (Mnuc2 -q2 +Mnuc*W)/W/Mnuc
309  + CV4 * (W2 +q2 - Mnuc2)/2./Mnuc2
310  + CV5 * (W2 -q2 - Mnuc2)/2./Mnuc2 );
311 
312  GV = 0.5 * TMath::Power( 1 - q2/(Mnuc + W)/(Mnuc + W), 0.5-IR)
313  * TMath::Sqrt( 3 * GV3*GV3 + GV1*GV1);
314  }
315 
316  if(fGA){
317  LOG("BSKLNBaseRESPXSec2014",pDEBUG) << "Using new GA";
318 
319  double CA5_0 = 1.2;
320  double CA5 = CA5_0 * TMath::Power( 1./(1-q2/fMa2), 2);
321  // GA = 0.5 * TMath::Sqrt(3.) * TMath::Power( 1 - q2/(Mnuc + W)/(Mnuc + W), 0.5-IR) * (1- (W2 +q2 -Mnuc2)/8./Mnuc2) * CA5/fZeta;
322  GA = 0.5 * TMath::Sqrt(3.) * TMath::Power( 1 - q2/(Mnuc + W)/(Mnuc + W), 0.5-IR) * (1- (W2 +q2 -Mnuc2)/8./Mnuc2) * CA5;
323 
324  LOG("BSKLNBaseRESPXSec2014",pINFO) <<"GA= " <<GA << " C5A= " <<CA5;
325  }
326  //JN end of new form factors code
327 
328  if(is_EM) {
329  GA = 0.; // zero the axial term for EM scattering
330  }
331 
332  double d = TMath::Power(W+Mnuc,2.) - q2;
333  double sq2omg = TMath::Sqrt(2./fOmega);
334  double nomg = IR * fOmega;
335  double mq_w = Mnuc*Q/W;
336 
337  fFKR.Lamda = sq2omg * mq_w;
338  fFKR.Tv = GV / (3.*W*sq2omg);
339  fFKR.Rv = kSqrt2 * mq_w*(W+Mnuc)*GV / d;
340  fFKR.S = (-q2/Q2) * (3*W*Mnuc + q2 - Mnuc2) * GV / (6*Mnuc2);
341  fFKR.Ta = (2./3.) * (fZeta/sq2omg) * mq_w * GA / d;
342  fFKR.Ra = (kSqrt2/6.) * fZeta * (GA/W) * (W+Mnuc + 2*nomg*W/d );
343  fFKR.B = fZeta/(3.*W*sq2omg) * (1 + (W2-Mnuc2+q2)/ d) * GA;
344  fFKR.C = fZeta/(6.*Q) * (W2 - Mnuc2 + nomg*(W2-Mnuc2+q2)/d) * (GA/Mnuc);
345  fFKR.R = fFKR.Rv;
346  fFKR.Rplus = - (fFKR.Rv + fFKR.Ra);
347  fFKR.Rminus = - (fFKR.Rv - fFKR.Ra);
348  fFKR.T = fFKR.Tv;
349  fFKR.Tplus = - (fFKR.Tv + fFKR.Ta);
350  fFKR.Tminus = - (fFKR.Tv - fFKR.Ta);
351 
352  //JN KNL
353  double KNL_S_plus = 0;
354  double KNL_S_minus = 0;
355  double KNL_B_plus = 0;
356  double KNL_B_minus = 0;
357  double KNL_C_plus = 0;
358  double KNL_C_minus = 0;
359 
360  if(is_CC && is_KLN){
361  KNL_S_plus = (KNL_vstar_plus*vstar - KNL_Qstar_plus *Qstar )* (Mnuc2 -q2 - 3*W*Mnuc ) * GV / (6*Mnuc2)/Q2; //possibly missing minus sign ()
362  KNL_S_minus = (KNL_vstar_minus*vstar - KNL_Qstar_minus*Qstar )* (Mnuc2 -q2 - 3*W*Mnuc ) * GV / (6*Mnuc2)/Q2;
363 
364  LOG("BSKLNBaseRESPXSec2014",pINFO) <<"KNL S= " <<KNL_S_plus<<"\t"<<KNL_S_minus<<"\t"<<fFKR.S;
365 
366  KNL_B_plus = fZeta/(3.*W*sq2omg)/Qstar * (KNL_Qstar_plus + KNL_vstar_plus *Qstar/a/Mnuc ) * GA;
367  KNL_B_minus = fZeta/(3.*W*sq2omg)/Qstar * (KNL_Qstar_minus + KNL_vstar_minus*Qstar/a/Mnuc ) * GA;
368  LOG("BSKLNBaseRESPXSec2014",pINFO) <<"KNL B= " <<KNL_B_plus<<"\t"<<KNL_B_minus<<"\t"<<fFKR.B;
369 
370  KNL_C_plus = ( (KNL_Qstar_plus*Qstar - KNL_vstar_plus*vstar ) * ( 1./3. + vstar/a/Mnuc)
371  + KNL_vstar_plus*(2./3.*W +q2/a/Mnuc + nomg/3./a/Mnuc) )* fZeta * (GA/2./W/Qstar);
372 
373  KNL_C_minus = ( (KNL_Qstar_minus*Qstar - KNL_vstar_minus*vstar ) * ( 1./3. + vstar/a/Mnuc)
374  + KNL_vstar_minus*(2./3.*W +q2/a/Mnuc + nomg/3./a/Mnuc) )* fZeta * (GA/2./W/Qstar);
375 
376  LOG("BSKLNBaseRESPXSec2014",pINFO) <<"KNL C= "<<KNL_C_plus<<"\t"<<KNL_C_minus<<"\t"<<fFKR.C;
377  }
378  double BRS_S_plus = 0;
379  double BRS_S_minus = 0;
380  double BRS_B_plus = 0;
381  double BRS_B_minus = 0;
382  double BRS_C_plus = 0;
383  double BRS_C_minus = 0;
384 
385 
386  if(is_CC && is_BRS){
387 
388  KNL_S_plus = (KNL_vstar_plus*vstar - KNL_Qstar_plus *Qstar )* (Mnuc2 -q2 - 3*W*Mnuc ) * GV / (6*Mnuc2)/Q2;
389  KNL_S_minus = (KNL_vstar_minus*vstar - KNL_Qstar_minus*Qstar )* (Mnuc2 -q2 - 3*W*Mnuc ) * GV / (6*Mnuc2)/Q2;
390 
391 
392  KNL_B_plus = fZeta/(3.*W*sq2omg)/Qstar * (KNL_Qstar_plus + KNL_vstar_plus *Qstar/a/Mnuc ) * GA;
393  KNL_B_minus = fZeta/(3.*W*sq2omg)/Qstar * (KNL_Qstar_minus + KNL_vstar_minus*Qstar/a/Mnuc ) * GA;
394 
395 
396  KNL_C_plus = ( (KNL_Qstar_plus*Qstar - KNL_vstar_plus*vstar ) * ( 1./3. + vstar/a/Mnuc)
397  + KNL_vstar_plus*(2./3.*W +q2/a/Mnuc + nomg/3./a/Mnuc) )* fZeta * (GA/2./W/Qstar);
398 
399  KNL_C_minus = ( (KNL_Qstar_minus*Qstar - KNL_vstar_minus*vstar ) * ( 1./3. + vstar/a/Mnuc)
400  + KNL_vstar_minus*(2./3.*W +q2/a/Mnuc + nomg/3./a/Mnuc) )* fZeta * (GA/2./W/Qstar);
401 
402  BRS_S_plus = KNL_S_plus;
403  BRS_S_minus = KNL_S_minus;
404  LOG("BSKLNBaseRESPXSec2014",pINFO) <<"BRS S= " <<KNL_S_plus<<"\t"<<KNL_S_minus<<"\t"<<fFKR.S;
405 
406  BRS_B_plus = KNL_B_plus + fZeta*GA/2./W/Qstar*( KNL_Qstar_plus*vstar - KNL_vstar_plus*Qstar)
407  *( 2./3 /sq2omg *(vstar + Qstar*Qstar/Mnuc/a))/(kPionMass2 -q2);
408 
409  BRS_B_minus = KNL_B_minus + fZeta*GA/2./W/Qstar*( KNL_Qstar_minus*vstar - KNL_vstar_minus*Qstar)
410  *( 2./3 /sq2omg *(vstar + Qstar*Qstar/Mnuc/a))/(kPionMass2 -q2);
411  LOG("BSKLNBaseRESPXSec2014",pINFO) <<"BRS B= " <<KNL_B_plus<<"\t"<<KNL_B_minus<<"\t"<<fFKR.B;
412 
413  BRS_C_plus = KNL_C_plus + fZeta*GA/2./W/Qstar*( KNL_Qstar_plus*vstar - KNL_vstar_plus*Qstar)
414  * Qstar*(2./3.*W +q2/Mnuc/a +nomg/3./a/Mnuc)/(kPionMass2 -q2);
415 
416  BRS_C_minus = KNL_C_minus + fZeta*GA/2./W/Qstar*( KNL_Qstar_minus*vstar - KNL_vstar_minus*Qstar)
417  * Qstar*(2./3.*W +q2/Mnuc/a +nomg/3./a/Mnuc)/(kPionMass2 -q2);
418  LOG("BSKLNBaseRESPXSec2014",pINFO) <<"BRS C= " <<KNL_C_plus<<"\t"<<KNL_C_minus<<"\t"<<fFKR.C;
419  }
420 
421 #ifdef __GENIE_LOW_LEVEL_MESG_ENABLED__
422  LOG("FKR", pDEBUG)
423  << "FKR params for RES = " << resname << " : " << fFKR;
424 #endif
425 
426  // Calculate the Rein-Sehgal Helicity Amplitudes
427  double sigL_minus = 0;
428  double sigR_minus = 0;
429  double sigS_minus = 0;
430 
431  double sigL_plus = 0;
432  double sigR_plus = 0;
433  double sigS_plus = 0;
434 
435  const RSHelicityAmplModelI * hamplmod = 0;
436  const RSHelicityAmplModelI * hamplmod_KNL_minus = 0;
437  const RSHelicityAmplModelI * hamplmod_KNL_plus = 0;
438  const RSHelicityAmplModelI * hamplmod_BRS_minus = 0;
439  const RSHelicityAmplModelI * hamplmod_BRS_plus = 0;
440 
441  // These lines were ~ 100 lines below, which means that, for EM interactions, the coefficients below were still calculated using the weak coupling constant - Afro
442  double g2 = kGF2;
443 
444  // For EM interaction replace G_{Fermi} with :
445  // a_{em} * pi / ( sqrt(2) * sin^2(theta_weinberg) * Mass_{W}^2 }
446  // See C.Quigg, Gauge Theories of the Strong, Weak and E/M Interactions,
447  // ISBN 0-8053-6021-2, p.112 (6.3.57)
448  // Also, take int account that the photon propagator is 1/p^2 but the
449  // W propagator is 1/(p^2-Mass_{W}^2), so weight the EM case with
450  // Mass_{W}^4 / q^4
451  // So, overall:
452  // G_{Fermi}^2 --> a_{em}^2 * pi^2 / (2 * sin^4(theta_weinberg) * q^{4})
453  //
454 
455  if(is_EM) {
456  double q4 = q2*q2;
457  g2 = kAem2 * kPi2 / (2.0 * fSin48w * q4);
458  }
459 
460  if(is_CC) g2 = kGF2*fVud2;
461 
462  double sig0 = 0.125*(g2/kPi)*(-q2/Q2)*(W/Mnuc);
463  double scLR = W/Mnuc;
464  double scS = (Mnuc/W)*(-Q2/q2);
465 
466  double sigL =0;
467  double sigR =0;
468  double sigS =0;
469 
470  double sigRSL =0;
471  double sigRSR =0;
472  double sigRSS =0;
473 
474  if(is_CC && !(is_KLN || is_BRS) ) {
475 
476  hamplmod = fHAmplModelCC;
477  }
478  else
479  if(is_NC) {
480  if (is_p) { hamplmod = fHAmplModelNCp;}
481  else { hamplmod = fHAmplModelNCn;}
482  }
483  else
484  if(is_EM) {
485  if (is_p) { hamplmod = fHAmplModelEMp;}
486  else { hamplmod = fHAmplModelEMn;}
487  }
488  else
489  if(is_CC && is_KLN ){
490  fFKR.S = KNL_S_minus; //2 times fFKR.S?
491  fFKR.B = KNL_B_minus;
492  fFKR.C = KNL_C_minus;
493 
494  hamplmod_KNL_minus = fHAmplModelCC;
495 
496  assert(hamplmod_KNL_minus);
497 
498  const RSHelicityAmpl & hampl_KNL_minus = hamplmod_KNL_minus->Compute(resonance, fFKR);
499 
500  sigL_minus = (hampl_KNL_minus.Amp2Plus3 () + hampl_KNL_minus.Amp2Plus1 ());
501  sigR_minus = (hampl_KNL_minus.Amp2Minus3() + hampl_KNL_minus.Amp2Minus1());
502  sigS_minus = (hampl_KNL_minus.Amp20Plus () + hampl_KNL_minus.Amp20Minus());
503 
504 
505  fFKR.S = KNL_S_plus;
506  fFKR.B = KNL_B_plus;
507  fFKR.C = KNL_C_plus;
508  hamplmod_KNL_plus = fHAmplModelCC;
509  assert(hamplmod_KNL_plus);
510 
511  const RSHelicityAmpl & hampl_KNL_plus = hamplmod_KNL_plus->Compute(resonance, fFKR);
512 
513  sigL_plus = (hampl_KNL_plus.Amp2Plus3 () + hampl_KNL_plus.Amp2Plus1 ());
514  sigR_plus = (hampl_KNL_plus.Amp2Minus3() + hampl_KNL_plus.Amp2Minus1());
515  sigS_plus = (hampl_KNL_plus.Amp20Plus () + hampl_KNL_plus.Amp20Minus());
516 
517  }
518  else
519  if(is_CC && is_BRS ){
520  fFKR.S = BRS_S_minus;
521  fFKR.B = BRS_B_minus;
522  fFKR.C = BRS_C_minus;
523 
524  hamplmod_BRS_minus = fHAmplModelCC;
525  assert(hamplmod_BRS_minus);
526 
527  const RSHelicityAmpl & hampl_BRS_minus = hamplmod_BRS_minus->Compute(resonance, fFKR);
528 
529  sigL_minus = (hampl_BRS_minus.Amp2Plus3 () + hampl_BRS_minus.Amp2Plus1 ());
530  sigR_minus = (hampl_BRS_minus.Amp2Minus3() + hampl_BRS_minus.Amp2Minus1());
531  sigS_minus = (hampl_BRS_minus.Amp20Plus () + hampl_BRS_minus.Amp20Minus());
532 
533  fFKR.S = BRS_S_plus;
534  fFKR.B = BRS_B_plus;
535  fFKR.C = BRS_C_plus;
536  hamplmod_BRS_plus = fHAmplModelCC;
537  assert(hamplmod_BRS_plus);
538 
539  const RSHelicityAmpl & hampl_BRS_plus = hamplmod_BRS_plus->Compute(resonance, fFKR);
540 
541  sigL_plus = (hampl_BRS_plus.Amp2Plus3 () + hampl_BRS_plus.Amp2Plus1 ());
542  sigR_plus = (hampl_BRS_plus.Amp2Minus3() + hampl_BRS_plus.Amp2Minus1());
543  sigS_plus = (hampl_BRS_plus.Amp20Plus () + hampl_BRS_plus.Amp20Minus());
544  }
545 
546  // Compute the cross section
547  if(is_KLN || is_BRS) {
548 
549  sigL_minus *= scLR;
550  sigR_minus *= scLR;
551  sigS_minus *= scS;
552  sigL_plus *= scLR;
553  sigR_plus *= scLR;
554  sigS_plus *= scS;
555 
556  LOG("BSKLNBaseRESPXSec2014", pINFO)
557  << "sL,R,S minus = " << sigL_minus << "," << sigR_minus << "," << sigS_minus;
558  LOG("BSKLNBaseRESPXSec2014", pINFO)
559  << "sL,R,S plus = " << sigL_plus << "," << sigR_plus << "," << sigS_plus;
560  }
561  else {
562  assert(hamplmod);
563 
564  const RSHelicityAmpl & hampl = hamplmod->Compute(resonance, fFKR);
565 
566  sigL = scLR* (hampl.Amp2Plus3 () + hampl.Amp2Plus1 ());
567  sigR = scLR* (hampl.Amp2Minus3() + hampl.Amp2Minus1());
568  sigS = scS * (hampl.Amp20Plus () + hampl.Amp20Minus());
569  }
570 
571 #ifdef __GENIE_LOW_LEVEL_MESG_ENABLED__
572  LOG("BSKLNBaseRESPXSec2014", pDEBUG) << "sig_{0} = " << sig0;
573  LOG("BSKLNBaseRESPXSec2014", pDEBUG) << "sig_{L} = " << sigL;
574  LOG("BSKLNBaseRESPXSec2014", pDEBUG) << "sig_{R} = " << sigR;
575  LOG("BSKLNBaseRESPXSec2014", pDEBUG) << "sig_{S} = " << sigS;
576 #endif
577 
578  double xsec = 0.0;
579 
580  if(is_KLN || is_BRS) {
581  xsec = TMath::Power(KNL_cL_minus,2)*sigL_minus + TMath::Power(KNL_cL_plus,2)*sigL_plus
582  + TMath::Power(KNL_cR_minus,2)*sigR_minus + TMath::Power(KNL_cR_plus,2)*sigR_plus
583  + TMath::Power(KNL_cS_minus,2)*sigS_minus + TMath::Power(KNL_cS_plus,2)*sigS_plus;
584  xsec *=sig0;
585 
586  LOG("BSKLNBaseRESPXSec2014",pINFO) << "A-="<<KNL_Alambda_minus<<" A+="<<KNL_Alambda_plus;
587  // protect against sigRSR=sigRSL=sigRSS=0
588  LOG("BSKLNBaseRESPXSec2014",pINFO) <<q2<<"\t"<<xsec<<"\t"<<sig0*(V2*sigR + U2*sigL + 2*UV*sigS)<<"\t"<<xsec/TMath::Max(sig0*(V2*sigRSR + U2*sigRSL + 2*UV*sigRSS),1.0e-100);
589  LOG("BSKLNBaseRESPXSec2014",pINFO) <<"fFKR.B="<<fFKR.B<<" fFKR.C="<<fFKR.C<<" fFKR.S="<<fFKR.S;
590  LOG("BSKLNBaseRESPXSec2014",pINFO) <<"CL-="<<TMath::Power(KNL_cL_minus,2)<<" CL+="<<TMath::Power(KNL_cL_plus,2)<<" U2="<<U2;
591  LOG("BSKLNBaseRESPXSec2014",pINFO) <<"SL-="<<sigL_minus<<" SL+="<<sigL_plus<<" SL="<<sigRSL;
592 
593  LOG("BSKLNBaseRESPXSec2014",pINFO) <<"CR-="<<TMath::Power(KNL_cR_minus,2)<<" CR+="<<TMath::Power(KNL_cR_plus,2)<<" V2="<<V2;
594  LOG("BSKLNBaseRESPXSec2014",pINFO) <<"SR-="<<sigR_minus<<" SR+="<<sigR_plus<<" sR="<<sigRSR;
595 
596  LOG("BSKLNBaseRESPXSec2014",pINFO) <<"CS-="<<TMath::Power(KNL_cS_minus,2)<<" CS+="<<TMath::Power(KNL_cS_plus,2)<<" UV="<<UV;
597  LOG("BSKLNBaseRESPXSec2014",pINFO) <<"SS-="<<sigL_minus<<" SS+="<<sigS_plus<<" sS="<<sigRSS;
598  }
599  else {
600  if (is_nu || is_lminus) {
601  xsec = sig0*(V2*sigR + U2*sigL + 2*UV*sigS);
602  }
603  else
604  if (is_nubar || is_lplus) {
605  xsec = sig0*(U2*sigR + V2*sigL + 2*UV*sigS);
606  }
607  xsec = TMath::Max(0.,xsec);
608  }
609  double mult = 1.0;
610  if ( is_CC && is_delta ) {
611  if ( (is_nu && is_p) || (is_nubar && is_n) ) mult=3.0;
612  }
613  xsec *= mult;
614 
615  // Check whether the cross section is to be weighted with a Breit-Wigner distribution
616  // (default: true)
617  double bw = 1.0;
618  if ( fWghtBW ) {
619  bw = utils::bwfunc::BreitWignerL(W,LR,MR,WR,NR);
620  }
621 #ifdef __GENIE_LOW_LEVEL_MESG_ENABLED__
622  LOG("BSKLNBaseRESPXSec2014", pDEBUG)
623  << "BreitWigner(RES=" << resname << ", W=" << W << ") = " << bw;
624 #endif
625  xsec *= bw;
626 
627 #ifdef __GENIE_LOW_LEVEL_MESG_ENABLED__
628  LOG("BSKLNBaseRESPXSec2014", pINFO)
629  << "\n d2xsec/dQ2dW" << "[" << interaction->AsString()
630  << "](W=" << W << ", q2=" << q2 << ", E=" << E << ") = " << xsec;
631 #endif
632 
633  // The algorithm computes d^2xsec/dWdQ2
634  // Check whether variable tranformation is needed
635  if ( kps != kPSWQ2fE ) {
636  double J = utils::kinematics::Jacobian(interaction,kPSWQ2fE,kps);
637  xsec *= J;
638  }
639 
640  // Apply given scaling factor
641  if (is_CC) { xsec *= fXSecScaleCC; }
642  else if (is_NC) { xsec *= fXSecScaleNC; }
643 
644  // If requested return the free nucleon xsec even for input nuclear tgt
645  if ( interaction->TestBit(kIAssumeFreeNucleon) ) return xsec;
646 
647  int Z = target.Z();
648  int A = target.A();
649  int N = A-Z;
650 
651  // Take into account the number of scattering centers in the target
652  int NNucl = (is_p) ? Z : N;
653  xsec*=NNucl; // nuclear xsec (no nuclear suppression factor)
654 
655  if ( fUsePauliBlocking && A!=1 )
656  {
657  // Calculation of Pauli blocking according references:
658  //
659  // [1] S.L. Adler, S. Nussinov, and E.A. Paschos, "Nuclear
660  // charge exchange corrections to leptonic pion production
661  // in the (3,3) resonance region," Phys. Rev. D 9 (1974)
662  // 2125-2143 [Erratum Phys. Rev. D 10 (1974) 1669].
663  // [2] J.Y. Yu, "Neutrino interactions and nuclear effects in
664  // oscillation experiments and the nonperturbative disper-
665  // sive sector in strong (quasi-)abelian fields," Ph. D.
666  // Thesis, Dortmund U., Dortmund, 2002 (unpublished).
667  // [3] E.A. Paschos, J.Y. Yu, and M. Sakuda, "Neutrino pro-
668  // duction of resonances," Phys. Rev. D 69 (2004) 014013
669  // [arXiv: hep-ph/0308130].
670 
671  double P_Fermi = 0.0;
672 
673  // Maximum value of Fermi momentum of target nucleon (GeV)
674  if ( A<6 || ! fUseRFGParametrization )
675  {
676  // look up the Fermi momentum for this target
678  const FermiMomentumTable * kft = kftp->GetTable(fKFTable);
679  P_Fermi = kft->FindClosestKF(pdg::IonPdgCode(A, Z), nucpdgc);
680  }
681  else {
682  // define the Fermi momentum for this target
684  // correct the Fermi momentum for the struck nucleon
685  if(is_p) { P_Fermi *= TMath::Power( 2.*Z/A, 1./3); }
686  else { P_Fermi *= TMath::Power( 2.*N/A, 1./3); }
687  }
688 
689  double FactorPauli_RES = 1.0;
690 
691  double k0 = 0., q = 0., q0 = 0.;
692 
693  if (P_Fermi > 0.)
694  {
695  k0 = (W2-Mnuc2-Q2)/(2*W);
696  k = TMath::Sqrt(k0*k0+Q2); // previous value of k is overridden
697  q0 = (W2-Mnuc2+kPionMass2)/(2*W);
698  q = TMath::Sqrt(q0*q0-kPionMass2);
699  }
700 
701  if ( 2*P_Fermi < k-q )
702  FactorPauli_RES = 1.0;
703  if ( 2*P_Fermi >= k+q )
704  FactorPauli_RES = ((3*k*k+q*q)/(2*P_Fermi)-(5*TMath::Power(k,4)+TMath::Power(q,4)+10*k*k*q*q)/(40*TMath::Power(P_Fermi,3)))/(2*k);
705  if ( 2*P_Fermi >= k-q && 2*P_Fermi <= k+q )
706  FactorPauli_RES = ((q+k)*(q+k)-4*P_Fermi*P_Fermi/5-TMath::Power(k-q, 3)/(2*P_Fermi)+TMath::Power(k-q, 5)/(40*TMath::Power(P_Fermi, 3)))/(4*q*k);
707 
708  xsec *= FactorPauli_RES;
709  }
710  return xsec;
711 }
712 //____________________________________________________________________________
713 double BSKLNBaseRESPXSec2014::Integral(const Interaction * interaction) const
714 {
715  double xsec = fXSecIntegrator->Integrate(this,interaction);
716  return xsec;
717 }
718 //____________________________________________________________________________
719 bool BSKLNBaseRESPXSec2014::ValidProcess(const Interaction * interaction) const
720 {
721  if(interaction->TestBit(kISkipProcessChk)) return true;
722 
723  const InitialState & init_state = interaction->InitState();
724  const ProcessInfo & proc_info = interaction->ProcInfo();
725  const XclsTag & xcls = interaction->ExclTag();
726 
727  if(!proc_info.IsResonant()) return false;
728  if(!xcls.KnownResonance()) return false;
729 
730  int hitnuc = init_state.Tgt().HitNucPdg();
731  bool is_pn = (pdg::IsProton(hitnuc) || pdg::IsNeutron(hitnuc));
732 
733  if (!is_pn) return false;
734 
735  int probe = init_state.ProbePdg();
736  bool is_weak = proc_info.IsWeak();
737  bool is_em = proc_info.IsEM();
738  bool nu_weak = (pdg::IsNeutralLepton(probe) && is_weak);
739  bool l_em = (pdg::IsChargedLepton(probe) && is_em );
740 
741  if (!nu_weak && !l_em) return false;
742 
743  return true;
744 }
745 //____________________________________________________________________________
747 {
748  Algorithm::Configure(config);
749  this->LoadConfig();
750 }
751 //____________________________________________________________________________
753 {
754  Algorithm::Configure(config);
755  this->LoadConfig();
756 }
757 //____________________________________________________________________________
759 {
760  // Cross section scaling factors
761  this->GetParam( "RES-CC-XSecScale", fXSecScaleCC ) ;
762  this->GetParam( "RES-NC-XSecScale", fXSecScaleNC ) ;
763 
764  // Load all configuration data or set defaults
765 
766  this->GetParam( "RES-Zeta" , fZeta ) ;
767  this->GetParam( "RES-Omega" , fOmega ) ;
768  this->GetParam( "minibooneGA", fGA ) ;
769  this->GetParam( "minibooneGV", fGV ) ;
770 
771  double ma, mv ;
772  this->GetParam( "RES-Ma", ma ) ;
773  this->GetParam( "RES-Mv", mv ) ;
774  fMa2 = TMath::Power(ma,2);
775  fMv2 = TMath::Power(mv,2);
776 
777  this->GetParamDef( "BreitWignerWeight", fWghtBW, true ) ;
778  this->GetParamDef( "BreitWignerNorm", fNormBW, true);
779  double thw ;
780  this->GetParam( "WeinbergAngle", thw ) ;
781  fSin48w = TMath::Power( TMath::Sin(thw), 4 );
782  double Vud;
783  this->GetParam("CKM-Vud", Vud );
784  fVud2 = TMath::Power( Vud, 2 );
785  this->GetParam("FermiMomentumTable", fKFTable);
786  this->GetParam("RFG-UseParametrization", fUseRFGParametrization);
787  this->GetParam("UsePauliBlockingForRES", fUsePauliBlocking);
788 
789  // Load all the sub-algorithms needed
790 
791  fHAmplModelCC = 0;
792  fHAmplModelNCp = 0;
793  fHAmplModelNCn = 0;
794  fHAmplModelEMp = 0;
795  fHAmplModelEMn = 0;
796 
797  AlgFactory * algf = AlgFactory::Instance();
798 
799  fHAmplModelCC = dynamic_cast<const RSHelicityAmplModelI *> (
800  algf->GetAlgorithm("genie::RSHelicityAmplModelCC","Default"));
801  fHAmplModelNCp = dynamic_cast<const RSHelicityAmplModelI *> (
802  algf->GetAlgorithm("genie::RSHelicityAmplModelNCp","Default"));
803  fHAmplModelNCn = dynamic_cast<const RSHelicityAmplModelI *> (
804  algf->GetAlgorithm("genie::RSHelicityAmplModelNCn","Default"));
805  fHAmplModelEMp = dynamic_cast<const RSHelicityAmplModelI *> (
806  algf->GetAlgorithm("genie::RSHelicityAmplModelEMp","Default"));
807  fHAmplModelEMn = dynamic_cast<const RSHelicityAmplModelI *> (
808  algf->GetAlgorithm("genie::RSHelicityAmplModelEMn","Default"));
809 
815 
816  // Use algorithm within a DIS/RES join scheme. If yes get Wcut
817  this->GetParam( "UseDRJoinScheme", fUsingDisResJoin ) ;
818  fWcut = 999999;
819  if(fUsingDisResJoin) {
820  this->GetParam( "Wcut", fWcut ) ;
821  }
822 
823  // NeuGEN limits in the allowed resonance phase space:
824  // W < min{ Wmin(physical), (res mass) + x * (res width) }
825  // It limits the integration area around the peak and avoids the
826  // problem with huge xsec increase at low Q2 and high W.
827  // In correspondence with Hugh, Rein said that the underlying problem
828  // are unphysical assumptions in the model.
829  this->GetParamDef( "MaxNWidthForN2Res", fN2ResMaxNWidths, 2.0 ) ;
830  this->GetParamDef( "MaxNWidthForN0Res", fN0ResMaxNWidths, 6.0 ) ;
831  this->GetParamDef( "MaxNWidthForGNRes", fGnResMaxNWidths, 4.0 ) ;
832 
833  // Load the differential cross section integrator
835  dynamic_cast<const XSecIntegratorI *> (this->SubAlg("XSec-Integrator"));
837 }
838 //____________________________________________________________________________
bool IsDelta(Resonance_t res)
is it a Delta resonance?
bool IsResonant(void) const
Definition: ProcessInfo.cxx:92
bool fNormBW
normalize resonance breit-wigner to 1?
Cross Section Calculation Interface.
virtual const RSHelicityAmpl & Compute(Resonance_t res, const FKR &fkr) const =0
string fKFTable
table of Fermi momentum (kF) constants for various nuclei
double fOmega
FKR parameter Omega.
const double kPi
const XML_Char * name
Definition: expat.h:151
double W(bool selected=false) const
Definition: Kinematics.cxx:167
Basic constants.
void Configure(const Registry &config)
bool IsWeak(void) const
bool IsWeakCC(void) const
static const double kSqrt2
Definition: Constants.h:116
bool IsNeutrino(int pdgc)
Definition: PDGUtils.cxx:108
const XML_Char * target
Definition: expat.h:268
bool fUsingDisResJoin
use a DIS/RES joining scheme?
double fXSecScaleNC
external NC xsec scaling factor
double J(double q0, double q3, double Enu, double ml)
Definition: MECUtils.cxx:141
THE MAIN GENIE PROJECT NAMESPACE
Definition: GeneratorBase.h:8
double Rminus
Definition: FKR.h:51
Cross Section Integrator Interface.
double Q2(const Interaction *const i)
Definition: KineUtils.cxx:991
int HitNucPdg(void) const
Definition: Target.cxx:321
double Ra
Definition: FKR.h:43
double Amp2Plus3(void) const
int A(void) const
Definition: Target.h:71
double Amp2Minus3(void) const
bool KnownResonance(void) const
Definition: XclsTag.h:61
double HitNucMass(void) const
Definition: Target.cxx:250
double fN0ResMaxNWidths
limits allowed phase space for n=0 res
static FermiMomentumTablePool * Instance(void)
Generated/set kinematical variables for an event.
Definition: Kinematics.h:40
double Lamda
Definition: FKR.h:38
bool IsChargedLepton(int pdgc)
Definition: PDGUtils.cxx:99
double Mass(Resonance_t res)
resonance mass (GeV)
double R
Definition: FKR.h:46
A table of Fermi momentum constants.
Definition: config.py:1
double Width(Resonance_t res)
resonance width (GeV)
double Amp2Plus1(void) const
double Amp2Minus1(void) const
return |helicity amplitude|^2
double BreitWignerL(double W, int L, double mass, double width0, double norm)
Definition: BWFunc.cxx:107
enum genie::EKinePhaseSpace KinePhaseSpace_t
double BWNorm(Resonance_t res, double N0ResMaxNWidths=6, double N2ResMaxNWidths=2, double GnResMaxNWidths=4)
breit-wigner normalization factor
enum genie::EResonance Resonance_t
const RSHelicityAmplModelI * fHAmplModelEMp
string AsString(void) const
Contains minimal information for tagging exclusive processes.
Definition: XclsTag.h:37
const RSHelicityAmplModelI * fHAmplModelCC
Float_t Z
Definition: plot.C:38
double fVud2
|Vud|^2(square of magnitude ud-element of CKM-matrix)
Double_t q2[12][num]
Definition: f2_nu.C:137
bool IsNeutron(int pdgc)
Definition: PDGUtils.cxx:304
bool IsPosChargedLepton(int pdgc)
Definition: PDGUtils.cxx:140
Summary information for an interaction.
Definition: Interaction.h:56
double Tv
Definition: FKR.h:39
virtual bool ValidKinematics(const Interaction *i) const
Is the input kinematical point a physically allowed one?
double q2(bool selected=false) const
Definition: Kinematics.cxx:151
A class holding the Rein-Sehgal&#39;s helicity amplitudes.
bool IsProton(int pdgc)
Definition: PDGUtils.cxx:299
bool IsWeakNC(void) const
const TLorentzVector & FSLeptonP4(void) const
Definition: Kinematics.h:66
Singleton class to load & serve tables of Fermi momentum constants.
#define LOG(stream, priority)
A macro that returns the requested log4cpp::Category appending a string (using the FILE...
Definition: Messenger.h:97
bool fWghtBW
weight with resonance breit-wigner?
const double NR
Float_t E
Definition: plot.C:20
const FermiMomentumTable * GetTable(string name)
static const double kAem2
Definition: Constants.h:58
A class encapsulating an enumeration of interaction types (EM, Weak-CC, Weak-NC) and scattering types...
Definition: ProcessInfo.h:44
const double a
double T
Definition: FKR.h:47
double Rv
Definition: FKR.h:40
bool IsAntiNeutrino(int pdgc)
Definition: PDGUtils.cxx:116
double fXSecScaleCC
external CC xsec scaling factor
A Neutrino Interaction Target. Is a transparent encapsulation of quite different physical systems suc...
Definition: Target.h:41
virtual void Configure(const Registry &config)
Definition: Algorithm.cxx:70
int ProbePdg(void) const
Definition: InitialState.h:65
const Algorithm * GetAlgorithm(const AlgId &algid)
Definition: AlgFactory.cxx:86
Float_t d
Definition: plot.C:236
bool fUsePauliBlocking
account for Pauli blocking?
double fWcut
apply DIS/RES joining scheme < Wcut
int OrbitalAngularMom(Resonance_t res)
orbital angular momentum
const RSHelicityAmplModelI * fHAmplModelEMn
int Z(void) const
Definition: Target.h:69
#define pINFO
Definition: Messenger.h:63
Pure abstract base class. Defines the RSHelicityAmplModelI interface.
Resonance_t Resonance(void) const
Definition: XclsTag.h:62
Double_t xsec[nknots]
Definition: testXsec.C:47
TParticlePDG * FSPrimLepton(void) const
final state primary lepton
double Amp20Minus(void) const
bool IsEM(void) const
bool IsNeutralLepton(int pdgc)
Definition: PDGUtils.cxx:93
double fGnResMaxNWidths
limits allowed phase space for other res
double C
Definition: FKR.h:45
double FermiMomentumForIsoscalarNucleonParametrization(const Target &target)
static const double A
Definition: Units.h:82
bool fUseRFGParametrization
use parametrization for fermi momentum insted of table?
const RSHelicityAmplModelI * fHAmplModelNCp
double Tplus
Definition: FKR.h:48
double Integral(const Interaction *i) const
static AlgFactory * Instance()
Definition: AlgFactory.cxx:75
double B
Definition: FKR.h:44
Var Sqrt(const Var &v)
Use to take sqrt of a var.
Definition: Var.cxx:326
double Rplus
Definition: FKR.h:50
double XSec(const Interaction *i, KinePhaseSpace_t k) const
Compute the cross section for the input interaction.
A registry. Provides the container for algorithm configuration parameters.
Definition: Registry.h:66
const UInt_t kIAssumeFreeNucleon
Definition: Interaction.h:49
const XclsTag & ExclTag(void) const
Definition: Interaction.h:72
double Tminus
Definition: FKR.h:49
int IonPdgCode(int A, int Z)
Definition: PDGUtils.cxx:69
virtual double Integrate(const XSecAlgorithmI *model, const Interaction *interaction) const =0
double fSin48w
sin^4(Weingberg angle)
assert(nhit_max >=nhit_nbins)
double Jacobian(const Interaction *const i, KinePhaseSpace_t f, KinePhaseSpace_t t)
Definition: KineUtils.cxx:128
double Amp20Plus(void) const
const InitialState & InitState(void) const
Definition: Interaction.h:69
const char * AsString(Resonance_t res)
resonance id -> string
const ProcessInfo & ProcInfo(void) const
Definition: Interaction.h:70
bool ValidProcess(const Interaction *i) const
Can this cross section algorithm handle the input process?
double FindClosestKF(int target_pdgc, int nucleon_pdgc) const
const RSHelicityAmplModelI * fHAmplModelNCn
bool GetParamDef(const RgKey &name, T &p, const T &def) const
bool GetParam(const RgKey &name, T &p, bool is_top_call=true) const
const Target & Tgt(void) const
Definition: InitialState.h:67
The GENIE Algorithm Factory.
Definition: AlgFactory.h:40
static const double kGF2
Definition: Constants.h:60
double fN2ResMaxNWidths
limits allowed phase space for n=2 res
void kinematics()
Definition: kinematics.C:10
#define W(x)
double fZeta
FKR parameter Zeta.
double ProbeE(RefFrame_t rf) const
Most commonly used PDG codes. A set of utility functions to handle PDG codes is provided in PDGUtils...
bool IsNegChargedLepton(int pdgc)
Definition: PDGUtils.cxx:131
static const double kPi2
Definition: Constants.h:39
double S
Definition: FKR.h:41
const XSecIntegratorI * fXSecIntegrator
double Ta
Definition: FKR.h:42
const UInt_t kISkipProcessChk
if set, skip process validity checks
Definition: Interaction.h:47
int ResonanceIndex(Resonance_t res)
resonance idx, quark model / SU(6)
Initial State information.
Definition: InitialState.h:49
#define pDEBUG
Definition: Messenger.h:64
static const double kPionMass2
Definition: Constants.h:87
const Algorithm * SubAlg(const RgKey &registry_key) const
Definition: Algorithm.cxx:353