Public Member Functions | Protected Member Functions | Protected Attributes | Private Member Functions | Private Attributes | List of all members
genie::CharmHadronization Class Reference

Provides access to the PYTHIA hadronization models.
Is a concrete implementation of the HadronizationModelI interface. More...

#include "/cvmfs/nova.opensciencegrid.org/externals/genie/v3_00_06_p01/Linux64bit+2.6-2.12-e17-debug/GENIE-Generator/src/Physics/Hadronization/CharmHadronization.h"

Inheritance diagram for genie::CharmHadronization:
genie::HadronizationModelI genie::Algorithm

Public Member Functions

 CharmHadronization ()
 
 CharmHadronization (string config)
 
virtual ~CharmHadronization ()
 
void Initialize (void) const
 define the HadronizationModelI interface More...
 
TClonesArray * Hadronize (const Interaction *) const
 
double Weight (void) const
 
PDGCodeListSelectParticles (const Interaction *) const
 
TH1D * MultiplicityProb (const Interaction *, Option_t *opt="") const
 
void Configure (const Registry &config)
 
void Configure (string config)
 
virtual void FindConfig (void)
 
virtual const RegistryGetConfig (void) const
 
RegistryGetOwnedConfig (void)
 
virtual const AlgIdId (void) const
 Get algorithm ID. More...
 
virtual AlgStatus_t GetStatus (void) const
 Get algorithm status. More...
 
virtual bool AllowReconfig (void) const
 
virtual AlgCmp_t Compare (const Algorithm *alg) const
 Compare with input algorithm. More...
 
virtual void SetId (const AlgId &id)
 Set algorithm ID. More...
 
virtual void SetId (string name, string config)
 
const AlgorithmSubAlg (const RgKey &registry_key) const
 
void AdoptConfig (void)
 
void AdoptSubstructure (void)
 
virtual void Print (ostream &stream) const
 Print algorithm info. More...
 

Protected Member Functions

void Initialize (void)
 
void DeleteConfig (void)
 
void DeleteSubstructure (void)
 
RegistryExtractLocalConfig (const Registry &in) const
 
RegistryExtractLowerConfig (const Registry &in, const string &alg_key) const
 Split an incoming configuration Registry into a block valid for the sub-algo identified by alg_key. More...
 
template<class T >
bool GetParam (const RgKey &name, T &p, bool is_top_call=true) const
 
template<class T >
bool GetParamDef (const RgKey &name, T &p, const T &def) const
 
template<class T >
bool GetParamVect (const std::string &comm_name, std::vector< T > &v, unsigned int max, bool is_top_call=true) const
 
int AddTopRegistry (Registry *rp, bool owns=true)
 add registry with top priority, also update ownership More...
 
int AddLowRegistry (Registry *rp, bool owns=true)
 add registry with lowest priority, also update ownership More...
 
int MergeTopRegistry (const Registry &r)
 
int AddTopRegisties (const vector< Registry * > &rs, bool owns=false)
 Add registries with top priority, also udated Ownerships. More...
 

Protected Attributes

bool fAllowReconfig
 
bool fOwnsSubstruc
 true if it owns its substructure (sub-algs,...) More...
 
AlgId fID
 algorithm name and configuration set More...
 
vector< Registry * > fConfVect
 
vector< bool > fOwnerships
 ownership for every registry in fConfVect More...
 
AlgStatus_t fStatus
 algorithm execution status More...
 
AlgMapfOwnedSubAlgMp
 local pool for owned sub-algs (taken out of the factory pool) More...
 

Private Member Functions

void LoadConfig (void)
 
int GenerateCharmHadron (int nupdg, double EvLab) const
 

Private Attributes

TGenPhaseSpace fPhaseSpaceGenerator
 a phase space generator More...
 
bool fCharmOnly
 don't hadronize non-charm blob More...
 
TF1 * fCharmPT2pdf
 charm hadron pT^2 pdf More...
 
const FragmentationFunctionIfFragmFunc
 charm hadron fragmentation func More...
 
SplinefD0FracSpl
 nu charm fraction vs Ev: D0 More...
 
SplinefDpFracSpl
 nu charm fraction vs Ev: D+ More...
 
SplinefDsFracSpl
 nu charm fraction vs Ev: Ds+ More...
 
double fD0BarFrac
 nubar {D0} charm fraction More...
 
double fDmFrac
 nubar D- charm fraction More...
 
TPythia6 * fPythia
 remnant (non-charm) hadronizer More...
 

Detailed Description

Provides access to the PYTHIA hadronization models.
Is a concrete implementation of the HadronizationModelI interface.

Author
Costas Andreopoulos <costas.andreopoulos stfc.ac.uk> University of Liverpool & STFC Rutherford Appleton Lab

Hugh Gallagher galla.nosp@m.g@mi.nosp@m.nos.p.nosp@m.hy.t.nosp@m.ufts..nosp@m.edu Tufts University

August 17, 2004

Copyright (c) 2003-2019, The GENIE Collaboration For the full text of the license visit http://copyright.genie-mc.org or see $GENIE/LICENSE

Definition at line 38 of file CharmHadronization.h.

Constructor & Destructor Documentation

CharmHadronization::CharmHadronization ( )

Definition at line 51 of file CharmHadronization.cxx.

References Initialize().

51  :
52 HadronizationModelI("genie::CharmHadronization")
53 {
54  this->Initialize();
55 }
void Initialize(void) const
define the HadronizationModelI interface
CharmHadronization::CharmHadronization ( string  config)

Definition at line 57 of file CharmHadronization.cxx.

References Initialize().

57  :
58 HadronizationModelI("genie::CharmHadronization", config)
59 {
60  this->Initialize();
61 }
void Initialize(void) const
define the HadronizationModelI interface
Definition: config.py:1
CharmHadronization::~CharmHadronization ( )
virtual

Definition at line 63 of file CharmHadronization.cxx.

References fCharmPT2pdf, fD0FracSpl, fDpFracSpl, and fDsFracSpl.

64 {
65  delete fCharmPT2pdf;
66  fCharmPT2pdf = 0;
67 
68  delete fD0FracSpl;
69  fD0FracSpl = 0;
70 
71  delete fDpFracSpl;
72  fDpFracSpl = 0;
73 
74  delete fDsFracSpl;
75  fDsFracSpl = 0;
76 }
Spline * fDpFracSpl
nu charm fraction vs Ev: D+
Spline * fDsFracSpl
nu charm fraction vs Ev: Ds+
Spline * fD0FracSpl
nu charm fraction vs Ev: D0
TF1 * fCharmPT2pdf
charm hadron pT^2 pdf

Member Function Documentation

int Algorithm::AddLowRegistry ( Registry rp,
bool  owns = true 
)
protectedinherited

add registry with lowest priority, also update ownership

Definition at line 601 of file Algorithm.cxx.

Referenced by genie::EventGenerator::Configure().

601  {
602 
603  fConfVect.push_back( rp ) ;
604  fOwnerships.push_back( own ) ;
605 
606  if ( fConfig ) {
607  delete fConfig ;
608  fConfig = 0 ;
609  }
610 
611  return fConfVect.size() ;
612 
613 }
vector< Registry * > fConfVect
Definition: Algorithm.h:161
vector< bool > fOwnerships
ownership for every registry in fConfVect
Definition: Algorithm.h:164
Registry * fConfig
Summary configuration derived from fConvVect, not necessarily allocated.
Definition: Algorithm.h:194
int Algorithm::AddTopRegisties ( const vector< Registry * > &  rs,
bool  owns = false 
)
protectedinherited

Add registries with top priority, also udated Ownerships.

Definition at line 653 of file Algorithm.cxx.

653  {
654 
655  fConfVect.insert( fConfVect.begin(), rs.begin(), rs.end() ) ;
656 
657  fOwnerships.insert( fOwnerships.begin(), rs.size(), own ) ;
658 
659  if ( fConfig ) {
660  delete fConfig ;
661  fConfig = 0 ;
662  }
663 
664  return fConfVect.size() ;
665 
666 }
vector< Registry * > fConfVect
Definition: Algorithm.h:161
vector< bool > fOwnerships
ownership for every registry in fConfVect
Definition: Algorithm.h:164
Registry * fConfig
Summary configuration derived from fConvVect, not necessarily allocated.
Definition: Algorithm.h:194
int Algorithm::AddTopRegistry ( Registry rp,
bool  owns = true 
)
protectedinherited

add registry with top priority, also update ownership

Definition at line 585 of file Algorithm.cxx.

Referenced by genie::EventGeneratorListAssembler::AssembleGeneratorList().

585  {
586 
587  fConfVect.insert( fConfVect.begin(), rp ) ;
588  fOwnerships.insert( fOwnerships.begin(), own ) ;
589 
590  if ( fConfig ) {
591  delete fConfig ;
592  fConfig = 0 ;
593  }
594 
595  return fConfVect.size() ;
596 
597 }
vector< Registry * > fConfVect
Definition: Algorithm.h:161
vector< bool > fOwnerships
ownership for every registry in fConfVect
Definition: Algorithm.h:164
Registry * fConfig
Summary configuration derived from fConvVect, not necessarily allocated.
Definition: Algorithm.h:194
void Algorithm::AdoptConfig ( void  )
inherited

Clone the configuration registry looked up from the configuration pool and take its ownership

Definition at line 394 of file Algorithm.cxx.

References Configure(), GetConfig(), LOG, and pNOTICE.

Referenced by genie::Algorithm::AllowReconfig().

394  {
395 
396  LOG("Algorithm", pNOTICE)
397  << this->Id().Key() << " is taking ownership of its configuration";
398 
399  // if(fOwnsConfig) {
400  // LOG("Algorithm", pWARN)
401  // << this->Id().Key() << " already owns its configuration!";
402  // return;
403  // }
404 
405  this->Configure( GetConfig() );
406 }
virtual const Registry & GetConfig(void) const
Definition: Algorithm.cxx:254
#define LOG(stream, priority)
A macro that returns the requested log4cpp::Category appending a string (using the FILE...
Definition: Messenger.h:97
virtual void Configure(const Registry &config)
Definition: Algorithm.cxx:70
virtual const AlgId & Id(void) const
Get algorithm ID.
Definition: Algorithm.h:98
#define pNOTICE
Definition: Messenger.h:62
string Key(void) const
Definition: AlgId.h:47
void Algorithm::AdoptSubstructure ( void  )
inherited

Take ownership of the algorithms subtructure (sub-algorithms,...) by copying them from the AlgFactory pool to the local pool Also bring all the configuration variables to the top level config Registry. This can be used to group together a series of algorithms & their configurations and extract (a clone of) this group from the shared pools. Having a series of algorithms/configurations behaving as a monolithic block, with a single point of configuration (the top level) is to be used when bits & pieces of GENIE are used in isolation for data fitting or reweighting

Definition at line 408 of file Algorithm.cxx.

References genie::AlgFactory::AdoptAlgorithm(), genie::Algorithm::AdoptSubstructure(), GetConfig(), genie::AlgFactory::Instance(), genie::kRgAlg, LOG, pDEBUG, pNOTICE, and genie::RegistryItemI::TypeInfo().

Referenced by genie::Algorithm::AdoptSubstructure(), genie::Algorithm::AllowReconfig(), main(), and testReconfigInOwnedModules().

409 {
410 // Take ownership of the algorithms subtructure (sub-algorithms,..) by copying
411 // them from the AlgFactory pool to the local pool. Also bring all the
412 // configuration variables to the top level. See the header for more details.
413 // A secial naming convention is required for configuration parameter keys
414 // for parameters belonging to sub-algorithms (or sub-algorithms of these
415 // sub-algorithms and so on...).
416 // The convention is: "sub-alg-key/sub-sub-alg-key/.../original name"
417 // This is a recursive method: The AdoptSubtructure()of all sub-algorithms is
418 // invoked.
419 //
420  LOG("Algorithm", pNOTICE)
421  << "Algorithm: " << this->Id().Key() << " is adopting its substructure";
422 
423 // Registry deep_config;
424 // deep_config.UnLock();
425 // deep_config.SetName(this->Id().Key());
426 
427  // deep_config.SetName(this->Id().Config() + ";D");
428  // fID.SetConfig(this->Id().Config() + ";D");
429 
430  if(fOwnsSubstruc) this->DeleteSubstructure();
431 
432  fOwnedSubAlgMp = new AlgMap;
433  fOwnsSubstruc = true;
434 
435  AlgFactory * algf = AlgFactory::Instance();
436 
437  const RgIMap & rgmap = GetConfig().GetItemMap();
438 
439  RgIMapConstIter iter = rgmap.begin();
440  for( ; iter != rgmap.end(); ++iter) {
441 
442  RgKey reg_key = iter->first;
443  RegistryItemI * ri = iter->second;
444 
445  if(ri->TypeInfo() == kRgAlg) {
446  LOG("Algorithm", pDEBUG)
447  << "Found sub-algorithm pointed to by " << reg_key;
448  RgAlg reg_alg = fConfig->GetAlg(reg_key);
449  AlgId id(reg_alg);
450 
451  LOG("Algorithm", pDEBUG) << "Adopting sub-algorithm = " << id.Key();
452  Algorithm * subalg = algf->AdoptAlgorithm(id.Name(),id.Config());
453  subalg->AdoptSubstructure();
454 
455  LOG("Algorithm", pDEBUG) << "Adding sub-algorithm to local pool";
456  AlgMapPair key_alg_pair(reg_key, subalg);
457  fOwnedSubAlgMp->insert(key_alg_pair);
458 
459  }
460 
461  }
462 
463 
464  if ( fConfig ) {
465  delete fConfig ;
466  fConfig = 0 ;
467  }
468 
469 }
::xsd::cxx::tree::id< char, ncname > id
Definition: Database.h:165
void DeleteSubstructure(void)
Definition: Algorithm.cxx:496
AlgMap * fOwnedSubAlgMp
local pool for owned sub-algs (taken out of the factory pool)
Definition: Algorithm.h:167
bool fOwnsSubstruc
true if it owns its substructure (sub-algs,...)
Definition: Algorithm.h:155
Algorithm abstract base class.
Definition: Algorithm.h:54
map< string, Algorithm * > AlgMap
Definition: Algorithm.h:49
Registry item pABC.
Definition: RegistryItemI.h:30
virtual const Registry & GetConfig(void) const
Definition: Algorithm.cxx:254
virtual RgType_t TypeInfo(void) const =0
map< RgKey, RegistryItemI * >::const_iterator RgIMapConstIter
Definition: Registry.h:50
#define LOG(stream, priority)
A macro that returns the requested log4cpp::Category appending a string (using the FILE...
Definition: Messenger.h:97
const RgIMap & GetItemMap(void) const
Definition: Registry.h:162
void AdoptSubstructure(void)
Definition: Algorithm.cxx:408
pair< string, Algorithm * > AlgMapPair
Definition: Algorithm.h:52
Algorithm * AdoptAlgorithm(const AlgId &algid) const
Definition: AlgFactory.cxx:127
Algorithm ID (algorithm name + configuration set name)
Definition: AlgId.h:35
virtual const AlgId & Id(void) const
Get algorithm ID.
Definition: Algorithm.h:98
static AlgFactory * Instance()
Definition: AlgFactory.cxx:75
string RgKey
Registry * fConfig
Summary configuration derived from fConvVect, not necessarily allocated.
Definition: Algorithm.h:194
#define pNOTICE
Definition: Messenger.h:62
The GENIE Algorithm Factory.
Definition: AlgFactory.h:40
string Key(void) const
Definition: AlgId.h:47
RgAlg GetAlg(RgKey key) const
Definition: Registry.cxx:503
#define pDEBUG
Definition: Messenger.h:64
map< RgKey, RegistryItemI * > RgIMap
Definition: Registry.h:46
virtual bool genie::Algorithm::AllowReconfig ( void  ) const
inlinevirtualinherited
AlgCmp_t Algorithm::Compare ( const Algorithm alg) const
virtualinherited

Compare with input algorithm.

Definition at line 294 of file Algorithm.cxx.

References genie::AlgId::Config(), genie::Algorithm::Id(), genie::kAlgCmpDiffAlg, genie::kAlgCmpDiffConfig, genie::kAlgCmpIdentical, genie::kAlgCmpUnknown, and genie::AlgId::Name().

Referenced by genie::Algorithm::AllowReconfig().

295 {
296 // Compares itself with the input algorithm
297 
298  string alg1 = this->Id().Name();
299  string config1 = this->Id().Config();
300  string alg2 = algo->Id().Name();
301  string config2 = algo->Id().Config();
302 
303  if(alg1 == alg2)
304  {
305  if(config1 == config2) return kAlgCmpIdentical;
306  else return kAlgCmpDiffConfig;
307  }
308  else return kAlgCmpDiffAlg;
309 
310  return kAlgCmpUnknown;
311 }
string Name(void) const
Definition: AlgId.h:45
virtual const AlgId & Id(void) const
Get algorithm ID.
Definition: Algorithm.h:98
string Config(void) const
Definition: AlgId.h:46
void CharmHadronization::Configure ( const Registry config)
virtual

Configure the algorithm with an external registry The registry is merged with the top level registry if it is owned, Otherwise a copy of it is added with the highest priority

Reimplemented from genie::Algorithm.

Definition at line 683 of file CharmHadronization.cxx.

References genie::Algorithm::Configure(), and LoadConfig().

684 {
685  Algorithm::Configure(config);
686  this->LoadConfig();
687 }
virtual void Configure(const Registry &config)
Definition: Algorithm.cxx:70
void CharmHadronization::Configure ( string  config)
virtual

Configure the algorithm from the AlgoConfigPool based on param_set string given in input An algorithm contains a vector of registries coming from different xml configuration files, which are loaded according a very precise prioriy This methods will load a number registries in order of priority: 1) "Tunable" parameter set from CommonParametes. This is loaded with the highest prioriry and it is designed to be used for tuning procedure Usage not expected from the user. 2) For every string defined in "CommonParame" the corresponding parameter set will be loaded from CommonParameter.xml 3) parameter set specified by the config string and defined in the xml file of the algorithm 4) if config is not "Default" also the Default parameter set from the same xml file will be loaded Effectively this avoids the repetion of a parameter when it is not changed in the requested configuration

Reimplemented from genie::Algorithm.

Definition at line 689 of file CharmHadronization.cxx.

References genie::Algorithm::Configure(), and LoadConfig().

690 {
692  this->LoadConfig();
693 }
Definition: config.py:1
virtual void Configure(const Registry &config)
Definition: Algorithm.cxx:70
void Algorithm::DeleteConfig ( void  )
protectedinherited

Definition at line 471 of file Algorithm.cxx.

References MECModelEnuComparisons::i.

Referenced by genie::Algorithm::AllowReconfig().

472 {
473  // there is nothing to delete if the configuration is not owned but is
474  // rather looked up from the configuration pool
475  //
476 
477  for ( unsigned int i = 0 ; i < fConfVect.size() ; ++i ) {
478  if ( fOwnerships[i] ) {
479  delete fConfVect[i] ;
480  }
481  }
482 
483  fConfVect.clear() ;
484  fOwnerships.clear() ;
485 
486  // delete owned configuration registry
487 
488  if(fConfig) {
489  delete fConfig;
490  fConfig=0;
491  }
492 
493 }
vector< Registry * > fConfVect
Definition: Algorithm.h:161
vector< bool > fOwnerships
ownership for every registry in fConfVect
Definition: Algorithm.h:164
Registry * fConfig
Summary configuration derived from fConvVect, not necessarily allocated.
Definition: Algorithm.h:194
void Algorithm::DeleteSubstructure ( void  )
protectedinherited

Definition at line 496 of file Algorithm.cxx.

Referenced by genie::Algorithm::AllowReconfig().

497 {
498  // there is nothing to delete if the sub-algorithms are not owned but rather
499  // taken from the AlgFactory's pool
500  //
501  if(!fOwnsSubstruc) return;
502 
503  // delete local algorithm pool
504  //
505  AlgMapIter iter = fOwnedSubAlgMp->begin();
506  for( ; iter != fOwnedSubAlgMp->end(); ++iter) {
507  Algorithm * alg = iter->second;
508  if(alg) {
509  delete alg;
510  alg=0;
511  }
512  }
513  delete fOwnedSubAlgMp;
514  fOwnedSubAlgMp = 0;
515 }
AlgMap * fOwnedSubAlgMp
local pool for owned sub-algs (taken out of the factory pool)
Definition: Algorithm.h:167
bool fOwnsSubstruc
true if it owns its substructure (sub-algs,...)
Definition: Algorithm.h:155
Algorithm abstract base class.
Definition: Algorithm.h:54
map< string, Algorithm * >::iterator AlgMapIter
Definition: Algorithm.h:50
Registry * Algorithm::ExtractLocalConfig ( const Registry in) const
protectedinherited

Split an incoming configuration Registry into a block valid for this algorithm Ownership of the returned registry belongs to the algo

Definition at line 518 of file Algorithm.cxx.

References genie::RegistryItemI::Clone(), genie::Registry::GetItemMap(), genie::Registry::Name(), and confusionMatrixTree::out.

Referenced by genie::Algorithm::AllowReconfig().

518  {
519 
520  const RgIMap & rgmap = in.GetItemMap();
521  Registry * out = new Registry( in.Name(), false );
522 
523  for( RgIMapConstIter reg_iter = rgmap.begin();
524  reg_iter != rgmap.end(); ++reg_iter ) {
525 
526  RgKey reg_key = reg_iter->first;
527  if( reg_key.find( '/' ) != string::npos) continue;
528 
529  // at this point
530  // this key is referred to the local algorithm
531  // it has to be copied in out;
532 
533  RegistryItemI * ri = reg_iter->second;
534  RgIMapPair key_item_pair( reg_key, ri->Clone() );
535  out -> Set(key_item_pair);
536 
537  }
538 
539  if ( out -> NEntries() <= 0 ) {
540  delete out ;
541  out = 0 ;
542  }
543 
544  return out ;
545 }
Registry item pABC.
Definition: RegistryItemI.h:30
string Name(void) const
get the registry name
Definition: Registry.cxx:612
map< RgKey, RegistryItemI * >::const_iterator RgIMapConstIter
Definition: Registry.h:50
const RgIMap & GetItemMap(void) const
Definition: Registry.h:162
pair< RgKey, RegistryItemI * > RgIMapPair
Definition: Registry.h:47
string RgKey
A registry. Provides the container for algorithm configuration parameters.
Definition: Registry.h:66
virtual RegistryItemI * Clone(void) const =0
map< RgKey, RegistryItemI * > RgIMap
Definition: Registry.h:46
Registry * Algorithm::ExtractLowerConfig ( const Registry in,
const string alg_key 
) const
protectedinherited

Split an incoming configuration Registry into a block valid for the sub-algo identified by alg_key.

Definition at line 549 of file Algorithm.cxx.

References genie::RegistryItemI::Clone(), genie::Registry::GetItemMap(), genie::Registry::Name(), and confusionMatrixTree::out.

Referenced by genie::Algorithm::AllowReconfig().

549  {
550 
551  const RgIMap & rgmap = in.GetItemMap();
552  Registry * out = new Registry( in.Name(), false );
553 
554  for( RgIMapConstIter reg_iter = rgmap.begin();
555  reg_iter != rgmap.end(); ++reg_iter ) {
556 
557  RgKey reg_key = reg_iter->first;
558  if( reg_key.find(alg_key+"/") == string::npos) continue;
559 
560  // at this point
561  // this key is referred to the sub-algorithm
562  // indicated by alg_key: it has to be copied in out;
563 
564  int new_key_start = reg_key.find_first_of('/')+1;
565  RgKey new_reg_key = reg_key.substr( new_key_start, reg_key.length() );
566 
567  RegistryItemI * ri = reg_iter->second;
568  RgIMapPair key_item_pair(new_reg_key, ri->Clone());
569  out -> Set(key_item_pair);
570 
571  }
572 
573  if ( out -> NEntries() <= 0 ) {
574  delete out ;
575  out = 0 ;
576  }
577 
578  return out ;
579 
580 }
Registry item pABC.
Definition: RegistryItemI.h:30
string Name(void) const
get the registry name
Definition: Registry.cxx:612
map< RgKey, RegistryItemI * >::const_iterator RgIMapConstIter
Definition: Registry.h:50
const RgIMap & GetItemMap(void) const
Definition: Registry.h:162
pair< RgKey, RegistryItemI * > RgIMapPair
Definition: Registry.h:47
string RgKey
A registry. Provides the container for algorithm configuration parameters.
Definition: Registry.h:66
virtual RegistryItemI * Clone(void) const =0
map< RgKey, RegistryItemI * > RgIMap
Definition: Registry.h:46
void Algorithm::FindConfig ( void  )
virtualinherited

Lookup configuration from the config pool Similar logic from void Configure(string)

Definition at line 135 of file Algorithm.cxx.

References gen_flatrecord::config, exit(), genie::AlgConfigPool::FindRegistry(), genie::Registry::GetItemMap(), genie::Registry::GetString(), MECModelEnuComparisons::i, genie::AlgConfigPool::Instance(), it, genie::Registry::ItemIsLocal(), parse_dependency_file_t::list, LOG, pDEBUG, pFATAL, time_estimates::pool, pWARN, moon_position_table_new3::second, genie::utils::str::Split(), string, and APDHVSetting::temp.

136 {
137 // Finds its configration Registry from the ConfigPool and gets a pointer to
138 // it. If the Registry comes from the ConfigPool then the Algorithm does not
139 // own its configuration (the ConfigPool singleton keeps the ownership and the
140 // responsibility to -eventually- delete all the Registries it instantiates
141 // by parsing the XML config files).
142 
143  DeleteConfig() ;
144 
146 
147  Registry * config = 0 ;
148 
149  // load the Default config if config is not the default
150  if ( fID.Config() != "Default" ) {
151  config = pool -> FindRegistry( fID.Name(), "Default" );
152  if ( config ) {
153  if ( config -> NEntries() > 0 ) {
154  AddTopRegistry( config, false ) ;
155  LOG("Algorithm", pDEBUG) << "\n" << *config;
156  }
157  }
158  }
159 
160  // Load the right config
161  config = pool->FindRegistry(this);
162 
163  if(!config)
164  // notify & keep whatever config Registry was used before.
165  LOG("Algorithm", pWARN)
166  << "No Configuration available for "
167  << this->Id().Key() << " at the ConfigPool";
168  else {
169  if ( config -> NEntries() > 0 ) {
170  AddTopRegistry( config, false ) ;
171  LOG("Algorithm", pDEBUG) << "\n" << config;
172  }
173  }
174 
175  const string common_key_root = "Common" ;
176  std::map<string, string> common_lists;
177 
178  // Load Common Parameters if key that start with "Common" is found
179  for ( unsigned int i = 0 ; i < fConfVect.size() ; ++i ) {
180  const Registry & temp = * fConfVect[i] ;
181  for ( RgIMapConstIter it = temp.GetItemMap().begin() ; it != temp.GetItemMap().end() ; ++it ) {
182 
183  // check if it is a "Common" entry
184  if ( it -> first.find( common_key_root ) == 0 ) {
185  // retrieve the type of the common entry
186  std::string type = it -> first.substr(common_key_root.size() ) ;
187 
188  if ( temp.ItemIsLocal( it -> first ) ) {
189 
190  string temp_list = temp.GetString( it -> first ) ;
191  if ( temp_list.length() > 0 ) {
192  common_lists[type] = temp_list ;
193  }
194  }
195  }
196 
197  }
198 
199  } // loop over the local registries
200 
201 
202  for ( std::map<string, string>::const_iterator it = common_lists.begin() ;
203  it != common_lists.end() ; ++it ) {
204 
205  vector<string> list = str::Split( it -> second , "," ) ;
206 
207  for ( unsigned int i = 0; i < list.size(); ++i ) {
208 
209  config = pool -> CommonList( it -> first, list[i] ) ;
210 
211  if ( ! config ) {
212  LOG("Algorithm", pFATAL)
213  << "No Commom parameters available for " << it -> first << " list "
214  << list[i] << " at the ConfigPool";
215 
216  exit( 78 ) ;
217  }
218  else {
219  AddLowRegistry( config, false ) ;
220  LOG("Algorithm", pDEBUG) << "Loading "
221  << it -> first << " registry "
222  << list[i] << " \n" << config;
223  }
224 
225  }
226 
227  }
228 
229 
230  // Load Tunable from CommonParameters
231  // only if the option is specified in RunOpt
232  config = pool -> CommonList( "Param", "Tunable" ) ;
233  if ( config ) {
234  if ( config -> NEntries() > 0 ) {
235  AddTopRegistry( config, false ) ;
236  LOG("Algorithm", pDEBUG) << "Loading Tunable registry \n" << config;
237  }
238  }
239  else {
240  // notify & keep whatever config Registry was used before.
241  LOG("Algorithm", pWARN)
242  << "No Tunable parameter set available at the ConfigPool";
243  }
244 
245  if ( fConfig ) {
246  delete fConfig ;
247  fConfig = 0 ;
248  }
249 
250 }
set< int >::iterator it
A singleton class holding all configuration registries built while parsing all loaded XML configurati...
Definition: AlgConfigPool.h:41
#define pFATAL
Definition: Messenger.h:57
Definition: config.py:1
AlgId fID
algorithm name and configuration set
Definition: Algorithm.h:156
map< RgKey, RegistryItemI * >::const_iterator RgIMapConstIter
Definition: Registry.h:50
#define LOG(stream, priority)
A macro that returns the requested log4cpp::Category appending a string (using the FILE...
Definition: Messenger.h:97
const RgIMap & GetItemMap(void) const
Definition: Registry.h:162
string Name(void) const
Definition: AlgId.h:45
bool ItemIsLocal(RgKey key) const
local or global?
Definition: Registry.cxx:193
int AddTopRegistry(Registry *rp, bool owns=true)
add registry with top priority, also update ownership
Definition: Algorithm.cxx:585
#define pWARN
Definition: Messenger.h:61
void DeleteConfig(void)
Definition: Algorithm.cxx:471
virtual const AlgId & Id(void) const
Get algorithm ID.
Definition: Algorithm.h:98
RgStr GetString(RgKey key) const
Definition: Registry.cxx:496
vector< Registry * > fConfVect
Definition: Algorithm.h:161
vector< string > Split(string input, string delim)
Definition: StringUtils.cxx:42
A registry. Provides the container for algorithm configuration parameters.
Definition: Registry.h:66
exit(0)
Registry * fConfig
Summary configuration derived from fConvVect, not necessarily allocated.
Definition: Algorithm.h:194
Registry * FindRegistry(string key) const
int AddLowRegistry(Registry *rp, bool owns=true)
add registry with lowest priority, also update ownership
Definition: Algorithm.cxx:601
string Key(void) const
Definition: AlgId.h:47
static AlgConfigPool * Instance()
#define pDEBUG
Definition: Messenger.h:64
string Config(void) const
Definition: AlgId.h:46
enum BeamMode string
int CharmHadronization::GenerateCharmHadron ( int  nupdg,
double  EvLab 
) const
private

Definition at line 659 of file CharmHadronization.cxx.

References genie::Spline::Evaluate(), fD0BarFrac, fD0FracSpl, fDmFrac, fDpFracSpl, fDsFracSpl, genie::RandomGen::Instance(), genie::pdg::IsAntiNeutrino(), genie::pdg::IsNeutrino(), genie::kPdgAntiD0, genie::kPdgD0, genie::kPdgDM, genie::kPdgDMs, genie::kPdgDP, genie::kPdgDPs, genie::kPdgLambdaPc, LOG, pERROR, r(), generate_hists::rnd, and genie::RandomGen::RndHadro().

Referenced by Hadronize().

660 {
661  // generate a charmed hadron pdg code using a charm fraction table
662 
664  double r = rnd->RndHadro().Rndm();
665 
666  if(pdg::IsNeutrino(nu_pdg)) {
667  double tf = 0;
668  if (r < (tf+=fD0FracSpl->Evaluate(EvLab))) return kPdgD0; // D^0
669  else if (r < (tf+=fDpFracSpl->Evaluate(EvLab))) return kPdgDP; // D^+
670  else if (r < (tf+=fDsFracSpl->Evaluate(EvLab))) return kPdgDPs; // Ds^+
671  else return kPdgLambdaPc; // Lamda_c^+
672 
673  } else if(pdg::IsAntiNeutrino(nu_pdg)) {
674  if (r < fD0BarFrac) return kPdgAntiD0;
675  else if (r < fD0BarFrac+fDmFrac) return kPdgDM;
676  else return kPdgDMs;
677  }
678 
679  LOG("CharmHad", pERROR) << "Could not generate a charm hadron!";
680  return 0;
681 }
const int kPdgAntiD0
Definition: PDGCodes.h:161
const int kPdgDPs
Definition: PDGCodes.h:162
double fDmFrac
nubar D- charm fraction
bool IsNeutrino(int pdgc)
Definition: PDGUtils.cxx:108
Spline * fDpFracSpl
nu charm fraction vs Ev: D+
#define pERROR
Definition: Messenger.h:60
static RandomGen * Instance()
Access instance.
Definition: RandomGen.cxx:79
Timing fit.
double Evaluate(double x) const
Definition: Spline.cxx:362
A singleton holding random number generator classes. All random number generation in GENIE should tak...
Definition: RandomGen.h:30
#define LOG(stream, priority)
A macro that returns the requested log4cpp::Category appending a string (using the FILE...
Definition: Messenger.h:97
bool IsAntiNeutrino(int pdgc)
Definition: PDGUtils.cxx:116
double fD0BarFrac
nubar {D0} charm fraction
const int kPdgLambdaPc
Definition: PDGCodes.h:83
const int kPdgDP
Definition: PDGCodes.h:158
TRandom3 & RndHadro(void) const
rnd number generator used by hadronization models
Definition: RandomGen.h:54
const int kPdgDMs
Definition: PDGCodes.h:163
const int kPdgDM
Definition: PDGCodes.h:159
TRandom3 r(0)
Spline * fDsFracSpl
nu charm fraction vs Ev: Ds+
const int kPdgD0
Definition: PDGCodes.h:160
Spline * fD0FracSpl
nu charm fraction vs Ev: D0
const Registry & Algorithm::GetConfig ( void  ) const
virtualinherited

Get configuration registry Evaluate the summary of the configuration and returns it The summary of a configuration is a merge of all the registries known to the algorithm (see Configure() methods) but every parameter is appearing only once and in case of repetitions, only the parameter from the registry with the highest prioriry is considered.

Definition at line 254 of file Algorithm.cxx.

References febshutoff_auto::end, genie::Algorithm::GetConfig(), MECModelEnuComparisons::i, LOG, pDEBUG, r(), and moon_position_table_new3::second.

Referenced by genie::EventGeneratorListAssembler::AssembleGeneratorList(), GetAlgorithms(), genie::Algorithm::GetConfig(), genie::GRV98LO::GRV98LO(), genie::NewQELXSec::Integrate(), genie::LHAPDF5::LHAPDF5(), genie::IBDXSecMap::LoadConfig(), genie::Decayer::LoadConfig(), genie::PythiaHadronization::LoadConfig(), genie::FGMBodekRitchie::LoadConfig(), genie::NuclearModelMap::LoadConfig(), genie::SmithMonizUtils::LoadConfig(), main(), genie::AlgFactory::Print(), TestPythiaTauDecays(), testReconfigInOwnedModules(), and genie::P33PaschosLalakulichPXSec::XSec().

254  {
255 
256  if ( fConfig ) return * fConfig ;
257 
258  const_cast<Algorithm*>( this ) -> fConfig = new Registry( fID.Key() + "_summary", false ) ;
259 
260  // loop and append
261  // understand the append mechanism
262  for ( unsigned int i = 0 ; i < fConfVect.size(); ++i ) {
263  fConfig -> Append( * fConfVect[i] ) ;
264  }
265 
266  if ( fOwnsSubstruc ) {
267 
268  for ( AlgMapConstIter iter = fOwnedSubAlgMp -> begin() ;
269  iter != fOwnedSubAlgMp -> end() ; ++iter ) {
270 
271  Algorithm * subalg = iter -> second ;
272 
273  LOG("Algorithm", pDEBUG) << "Appending config from " << iter -> first << " -> " << subalg -> Id() ;
274  const Registry & r = subalg->GetConfig();
275  RgKey prefix = iter -> first + "/";
276  fConfig -> Append(r,prefix);
277 
278  }
279 
280  } //if owned substructure
281 
282  return * fConfig ;
283 }
AlgMap * fOwnedSubAlgMp
local pool for owned sub-algs (taken out of the factory pool)
Definition: Algorithm.h:167
bool fOwnsSubstruc
true if it owns its substructure (sub-algs,...)
Definition: Algorithm.h:155
Algorithm abstract base class.
Definition: Algorithm.h:54
AlgId fID
algorithm name and configuration set
Definition: Algorithm.h:156
virtual const Registry & GetConfig(void) const
Definition: Algorithm.cxx:254
#define LOG(stream, priority)
A macro that returns the requested log4cpp::Category appending a string (using the FILE...
Definition: Messenger.h:97
const XML_Char * prefix
Definition: expat.h:380
map< string, Algorithm * >::const_iterator AlgMapConstIter
Definition: Algorithm.h:51
virtual const AlgId & Id(void) const
Get algorithm ID.
Definition: Algorithm.h:98
vector< Registry * > fConfVect
Definition: Algorithm.h:161
string RgKey
A registry. Provides the container for algorithm configuration parameters.
Definition: Registry.h:66
TRandom3 r(0)
Registry * fConfig
Summary configuration derived from fConvVect, not necessarily allocated.
Definition: Algorithm.h:194
string Key(void) const
Definition: AlgId.h:47
#define pDEBUG
Definition: Messenger.h:64
Registry * Algorithm::GetOwnedConfig ( void  )
inherited

Returns the pointer of the summary registry, see previous method Gives access to the summary so it could be changed. The usage of this method is deprecated as it is mantained only for back compatibility. If you need to add or chage a parter (or more), use the AddTopRegistry() instead

Definition at line 287 of file Algorithm.cxx.

References GetConfig().

Referenced by genie::TransverseEnhancementFFModel::LoadConfig(), and genie::EffectiveSF::LoadConfig().

288 {
289 
290  GetConfig() ;
291  return fConfig;
292 }
virtual const Registry & GetConfig(void) const
Definition: Algorithm.cxx:254
Registry * fConfig
Summary configuration derived from fConvVect, not necessarily allocated.
Definition: Algorithm.h:194
template<class T >
bool genie::Algorithm::GetParam ( const RgKey name,
T p,
bool  is_top_call = true 
) const
protectedinherited

Ideal access to a parameter value from the vector of registries Returns true if the value is found and the parameters is set

Referenced by genie::CollinsSpillerFragm::BuildFunction(), genie::PetersonFragm::BuildFunction(), genie::INukeDeltaPropg::LoadConfig(), genie::COHXSec::LoadConfig(), genie::DISXSec::LoadConfig(), genie::HadronTransporter::LoadConfig(), genie::DFRKinematicsGenerator::LoadConfig(), genie::RSHelicityAmplModelNCn::LoadConfig(), genie::RSHelicityAmplModelNCp::LoadConfig(), genie::BaryonResonanceDecayer::LoadConfig(), genie::RESKinematicsGenerator::LoadConfig(), genie::DMDISXSec::LoadConfig(), genie::DipoleAxialFormFactorModel::LoadConfig(), genie::DipoleELFormFactorsModel::LoadConfig(), genie::COHKinematicsGenerator::LoadConfig(), genie::VertexGenerator::LoadConfig(), genie::H3AMNuGammaPXSec::LoadConfig(), genie::RSPPResonanceSelector::LoadConfig(), genie::IBDXSecMap::LoadConfig(), genie::Decayer::LoadConfig(), genie::DISHadronicSystemGenerator::LoadConfig(), genie::EmpiricalMECPXSec2015::LoadConfig(), genie::COHElasticPXSec::LoadConfig(), genie::KuzminNaumov2016AxialFormFactorModel::LoadConfig(), genie::SlowRsclCharmDISPXSecLO::LoadConfig(), genie::UnstableParticleDecayer::LoadConfig(), genie::AhrensNCELPXSec::LoadConfig(), genie::AlamSimoAtharVacasSKPXSec2014::LoadConfig(), genie::PythiaHadronization::LoadConfig(), genie::ReinDFRPXSec::LoadConfig(), genie::BYPDF::LoadConfig(), genie::QPMDISPXSec::LoadConfig(), genie::DFRXSec::LoadConfig(), genie::RosenbluthPXSec::LoadConfig(), genie::StrumiaVissaniIBDPXSec::LoadConfig(), genie::MECGenerator::LoadConfig(), genie::KNOPythiaHadronization::LoadConfig(), genie::P33PaschosLalakulichPXSec::LoadConfig(), genie::AhrensDMELPXSec::LoadConfig(), genie::MECXSec::LoadConfig(), genie::AivazisCharmPXSecLO::LoadConfig(), genie::BergerSehgalFMCOHPiPXSec2015::LoadConfig(), genie::ZExpAxialFormFactorModel::LoadConfig(), genie::QPMDMDISPXSec::LoadConfig(), genie::BergerSehgalCOHPiPXSec2015::LoadConfig(), genie::BBA03ELFormFactorsModel::LoadConfig(), genie::BBA05ELFormFactorsModel::LoadConfig(), genie::LwlynSmithQELCCPXSec::LoadConfig(), genie::ReinSehgalRESXSec::LoadConfig(), genie::NuElectronPXSec::LoadConfig(), genie::PrimaryLeptonGenerator::LoadConfig(), genie::PaisQELLambdaPXSec::LoadConfig(), genie::FGMBodekRitchie::LoadConfig(), genie::SpectralFunc1d::LoadConfig(), genie::ReinSehgalCOHPiPXSec::LoadConfig(), genie::OutgoingDarkGenerator::LoadConfig(), genie::LHAPDF6::LoadConfig(), genie::NievesSimoVacasMECPXSec2016::LoadConfig(), LoadConfig(), genie::ReinSehgalRESXSecFast::LoadConfig(), genie::ReinSehgalSPPXSec::LoadConfig(), genie::EventGenerator::LoadConfig(), genie::NuclearModelMap::LoadConfig(), genie::ReinSehgalRESPXSec::LoadConfig(), genie::LwlynSmithFF::LoadConfig(), genie::SmithMonizQELCCPXSec::LoadConfig(), genie::QPMDISStrucFuncBase::LoadConfig(), genie::BBA07ELFormFactorsModel::LoadConfig(), genie::HAIntranuke::LoadConfig(), genie::NievesQELCCPXSec::LoadConfig(), genie::HAIntranuke2018::LoadConfig(), genie::HNIntranuke2018::LoadConfig(), genie::LocalFGM::LoadConfig(), genie::BSKLNBaseRESPXSec2014::LoadConfig(), genie::EffectiveSF::LoadConfig(), genie::ReinSehgalSPPPXSec::LoadConfig(), genie::KNOHadronization::LoadConfig(), genie::SmithMonizUtils::LoadConfig(), genie::MECInteractionListGenerator::LoadConfigData(), genie::PhysInteractionSelector::LoadConfigData(), genie::RESInteractionListGenerator::LoadConfigData(), genie::PauliBlocker::LoadModelType(), genie::BYStrucFunc::ReadBYParams(), and genie::LHAPDF5::SetPDFSetFromConfig().

template<class T >
bool genie::Algorithm::GetParamDef ( const RgKey name,
T p,
const T def 
) const
protectedinherited

Ideal access to a parameter value from the vector of registries, With default value. Returns true if the value is set from the registries, false if the value is the default

Referenced by genie::IMDXSec::LoadConfig(), genie::COHXSec::LoadConfig(), genie::RESXSec::LoadConfig(), genie::DISXSec::LoadConfig(), genie::DFRKinematicsGenerator::LoadConfig(), genie::COHXSecAR::LoadConfig(), genie::COHElKinematicsGenerator::LoadConfig(), genie::NuEKinematicsGenerator::LoadConfig(), genie::QELXSec::LoadConfig(), genie::RESKinematicsGenerator::LoadConfig(), genie::DMDISXSec::LoadConfig(), genie::BaryonResonanceDecayer::LoadConfig(), genie::SKKinematicsGenerator::LoadConfig(), genie::COHKinematicsGenerator::LoadConfig(), genie::IBDKinematicsGenerator::LoadConfig(), genie::NuEInteractionListGenerator::LoadConfig(), genie::QELKinematicsGenerator::LoadConfig(), genie::DMELXSec::LoadConfig(), genie::DISHadronicSystemGenerator::LoadConfig(), genie::DISKinematicsGenerator::LoadConfig(), genie::NucBindEnergyAggregator::LoadConfig(), genie::DMELKinematicsGenerator::LoadConfig(), genie::DMDISKinematicsGenerator::LoadConfig(), genie::QPMDISPXSec::LoadConfig(), genie::DFRXSec::LoadConfig(), genie::MECXSec::LoadConfig(), genie::FermiMover::LoadConfig(), genie::AlamSimoAtharVacasSKXSec::LoadConfig(), genie::AhrensDMELPXSec::LoadConfig(), genie::NuElectronXSec::LoadConfig(), genie::QELEventGenerator::LoadConfig(), genie::P33PaschosLalakulichPXSec::LoadConfig(), genie::QPMDMDISPXSec::LoadConfig(), genie::LwlynSmithQELCCPXSec::LoadConfig(), genie::ReinSehgalRESXSec::LoadConfig(), genie::FGMBodekRitchie::LoadConfig(), genie::ReinSehgalRESXSecFast::LoadConfig(), genie::KovalenkoQELCharmPXSec::LoadConfig(), genie::SmithMonizQELCCXSec::LoadConfig(), genie::ReinSehgalSPPXSec::LoadConfig(), genie::ReinSehgalRESPXSec::LoadConfig(), genie::QELEventGeneratorSM::LoadConfig(), genie::QPMDISStrucFuncBase::LoadConfig(), genie::SmithMonizQELCCPXSec::LoadConfig(), genie::NievesQELCCPXSec::LoadConfig(), genie::HAIntranuke::LoadConfig(), genie::LocalFGM::LoadConfig(), genie::HNIntranuke2018::LoadConfig(), genie::HAIntranuke2018::LoadConfig(), genie::BSKLNBaseRESPXSec2014::LoadConfig(), genie::EffectiveSF::LoadConfig(), genie::KNOHadronization::LoadConfig(), genie::NewQELXSec::LoadConfig(), genie::QELInteractionListGenerator::LoadConfigData(), genie::MECInteractionListGenerator::LoadConfigData(), genie::DFRInteractionListGenerator::LoadConfigData(), genie::SKInteractionListGenerator::LoadConfigData(), genie::COHInteractionListGenerator::LoadConfigData(), genie::RESInteractionListGenerator::LoadConfigData(), genie::DMELInteractionListGenerator::LoadConfigData(), genie::RSPPInteractionListGenerator::LoadConfigData(), genie::DISInteractionListGenerator::LoadConfigData(), and genie::DMDISInteractionListGenerator::LoadConfigData().

template<class T >
bool genie::Algorithm::GetParamVect ( const std::string comm_name,
std::vector< T > &  v,
unsigned int  max,
bool  is_top_call = true 
) const
protectedinherited

Handle to load vectors of parameters It looks for different registry item with name comm_name0, comm_name1, etc...

virtual AlgStatus_t genie::Algorithm::GetStatus ( void  ) const
inlinevirtualinherited

Get algorithm status.

Definition at line 101 of file Algorithm.h.

References genie::Algorithm::fStatus.

101 { return fStatus; }
AlgStatus_t fStatus
algorithm execution status
Definition: Algorithm.h:166
TClonesArray * CharmHadronization::Hadronize ( const Interaction interaction) const
virtual

Implements genie::HadronizationModelI.

Definition at line 83 of file CharmHadronization.cxx.

References ana::assert(), beta, fCharmOnly, fCharmPT2pdf, fFragmFunc, genie::PDGLibrary::Find(), fPhaseSpaceGenerator, fPythia, genie::Interaction::FSPrimLepton(), GenerateCharmHadron(), genie::FragmentationFunctionI::GenerateZ(), genie::Kinematics::HadSystP4(), genie::Target::HitNucPdg(), MECModelEnuComparisons::i, genie::PDGLibrary::Instance(), genie::RandomGen::Instance(), makeTrainCVSamples::int, ip, genie::pdg::IsAntiNeutrino(), genie::pdg::IsDarkMatter(), genie::pdg::IsNeutrino(), genie::pdg::IsNeutron(), genie::pdg::IsProton(), genie::controls::kASmallNum, kinematics(), genie::controls::kMaxUnweightDecayIterations, genie::constants::kNucleonMass, genie::kPdgAntiD0, genie::kPdgAntiDQuark, genie::kPdgD0, genie::kPdgDDDiquarkS1, genie::kPdgDM, genie::kPdgDMs, genie::kPdgDP, genie::kPdgDPs, genie::kPdgDQuark, genie::kPdgHadronicBlob, genie::kPdgLambdaPc, genie::kPdgNeutron, genie::kPdgP33m1232_Delta0, genie::kPdgP33m1232_DeltaM, genie::kPdgP33m1232_DeltaP, genie::kPdgP33m1232_DeltaPP, genie::kPdgPi0, genie::kPdgPiM, genie::kPdgPiP, genie::kPdgProton, genie::kPdgSQuark, genie::kPdgUDDiquarkS0, genie::kPdgUDDiquarkS1, genie::kPdgUQuark, genie::kPdgUUDiquarkS1, kPi, genie::constants::kPionMass, genie::kRfLab, genie::controls::kRjMaxIterations, LOG, mc, make_associated_cosmic_defs::p4, genie::utils::print::P4AsString(), pDEBUG, make_root_from_grid_output::pdg, pERROR, pINFO, pNOTICE, genie::InitialState::ProbeE(), genie::InitialState::ProbePdg(), genie::PDGCodeList::push_back(), pWARN, py2ent_(), generate_hists::rnd, genie::RandomGen::RndHadro(), ana::Sqrt(), genie::InitialState::Tgt(), w, W, genie::Kinematics::W(), and test::z.

85 {
86  LOG("CharmHad", pNOTICE) << "** Running CHARM hadronizer";
87 
88  PDGLibrary * pdglib = PDGLibrary::Instance();
90 
91  // ....................................................................
92  // Get information on the input event
93  //
94  const InitialState & init_state = interaction -> InitState();
95  const Kinematics & kinematics = interaction -> Kine();
96  const Target & target = init_state.Tgt();
97 
98  const TLorentzVector & p4Had = kinematics.HadSystP4();
99 
100  double Ev = init_state.ProbeE(kRfLab);
101  double W = kinematics.W(true);
102 
103  TVector3 beta = -1 * p4Had.BoostVector(); // boost vector for LAB' -> HCM'
104  TLorentzVector p4H(0,0,0,W); // hadronic system 4p @ HCM'
105 
106  double Eh = p4Had.Energy();
107 
108  LOG("CharmHad", pNOTICE) << "Ehad (LAB) = " << Eh << ", W = " << W;
109 
110  int nu_pdg = init_state.ProbePdg();
111  int nuc_pdg = target.HitNucPdg();
112 //int qpdg = target.HitQrkPdg();
113 //bool sea = target.HitSeaQrk();
114  bool isp = pdg::IsProton (nuc_pdg);
115  bool isn = pdg::IsNeutron(nuc_pdg);
116  bool isnu = pdg::IsNeutrino(nu_pdg);
117  bool isnub = pdg::IsAntiNeutrino(nu_pdg);
118  bool isdm = pdg::IsDarkMatter(nu_pdg);
119 
120  // ....................................................................
121  // Attempt to generate a charmed hadron & its 4-momentum
122  //
123 
124  TLorentzVector p4C(0,0,0,0);
125  int ch_pdg = -1;
126 
127  bool got_charmed_hadron = false;
128  unsigned int itry=0;
129 
130  while(itry++ < kRjMaxIterations && !got_charmed_hadron) {
131 
132  // Generate a charmed hadron PDG code
133  int pdg = this->GenerateCharmHadron(nu_pdg,Ev); // generate hadron
134  double mc = pdglib->Find(pdg)->Mass(); // lookup mass
135 
136  LOG("CharmHad", pNOTICE)
137  << "Trying charm hadron = " << pdg << "(m = " << mc << ")";
138 
139  if(mc>=W) continue; // dont' accept
140 
141  // Generate the charmed hadron energy based on the input
142  // fragmentation function
143  double z = fFragmFunc->GenerateZ(); // generate z(=Eh/Ev)
144  double Ec = z*Eh; // @ LAB'
145  double mc2 = TMath::Power(mc,2);
146  double Ec2 = TMath::Power(Ec,2);
147  double pc2 = Ec2-mc2;
148 
149  LOG("CharmHad", pINFO)
150  << "Trying charm hadron z = " << z << ", E = " << Ec;
151 
152  if(pc2<=0) continue;
153 
154  // Generate the charm hadron pT^2 and pL^2 (with respect to the
155  // hadronic system direction @ the LAB)
156  double ptc2 = fCharmPT2pdf->GetRandom();
157  double plc2 = Ec2 - ptc2 - mc2;
158  LOG("CharmHad", pINFO)
159  << "Trying charm hadron pT^2 (tranv to pHad) = " << ptc2;
160  if(plc2<0) continue;
161 
162  // Generate the charm hadron momentum components (@ LAB', z:\vec{pHad})
163  double ptc = TMath::Sqrt(ptc2);
164  double plc = TMath::Sqrt(plc2);
165  double phi = (2*kPi) * rnd->RndHadro().Rndm();
166  double pxc = ptc * TMath::Cos(phi);
167  double pyc = ptc * TMath::Sin(phi);
168  double pzc = plc;
169 
170  p4C.SetPxPyPzE(pxc,pyc,pzc,Ec); // @ LAB'
171 
172  // Boost charm hadron 4-momentum from the LAB' to the HCM' frame
173  //
174  LOG("CharmHad", pDEBUG)
175  << "Charm hadron p4 (@LAB') = " << utils::print::P4AsString(&p4C);
176 
177  p4C.Boost(beta);
178 
179  LOG("CharmHad", pDEBUG)
180  << "Charm hadron p4 (@HCM') = " << utils::print::P4AsString(&p4C);
181 
182  // Hadronic non-charm remnant 4p at HCM'
183  TLorentzVector p4 = p4H - p4C;
184  double wr = p4.M();
185  LOG("CharmHad", pINFO)
186  << "Invariant mass of remnant hadronic system= " << wr;
187  if(wr < kNucleonMass + kPionMass + kASmallNum) {
188  LOG("CharmHad", pINFO) << "Too small hadronic remnant mass!";
189  continue;
190  }
191 
192  ch_pdg = pdg;
193  got_charmed_hadron = true;
194 
195  LOG("CharmHad", pNOTICE)
196  << "Generated charm hadron = " << pdg << "(m = " << mc << ")";
197  LOG("CharmHad", pNOTICE)
198  << "Generated charm hadron z = " << z << ", E = " << Ec;
199  }
200 
201  // ....................................................................
202  // Check whether the code above had difficulty generating the charmed
203  // hadron near the W - threshold.
204  // If yes, attempt a phase space decay of a low mass charm hadron + nucleon
205  // pair that maintains the charge.
206  // That's a desperate solution but don't want to quit too early as that
207  // would distort the generated dsigma/dW distribution near threshold.
208  //
209  bool used_lowW_strategy = false;
210  int fs_nucleon_pdg = -1;
211  if(ch_pdg==-1 && W < 3.){
212  LOG("CharmHad", pNOTICE)
213  << "Had difficulty generating charm hadronic system near W threshold";
214  LOG("CharmHad", pNOTICE)
215  << "Trying an alternative strategy";
216 
217  double qfsl = interaction->FSPrimLepton()->Charge() / 3.;
218  double qinit = pdglib->Find(nuc_pdg)->Charge() / 3.;
219  int qhad = (int) (qinit - qfsl);
220 
221  int remn_pdg = -1;
222  int chrm_pdg = -1;
223 
224  //cc-only: qhad(nu) = +1,+2, qhad(nubar)= -1,0
225  //
226  if(qhad == 2) {
227  chrm_pdg = kPdgDP; remn_pdg = kPdgProton;
228  } else if(qhad == 1) {
229  if(rnd->RndHadro().Rndm() > 0.5) {
230  chrm_pdg = kPdgD0; remn_pdg = kPdgProton;
231  } else {
232  chrm_pdg = kPdgDP; remn_pdg = kPdgNeutron;
233  }
234  } else if(qhad == 0) {
235  chrm_pdg = kPdgAntiD0; remn_pdg = kPdgNeutron;
236  } else if(qhad == -1) {
237  chrm_pdg = kPdgDM; remn_pdg = kPdgNeutron;
238  }
239 
240  double mc = pdglib->Find(chrm_pdg)->Mass();
241  double mn = pdglib->Find(remn_pdg)->Mass();
242 
243  if(mc+mn < W) {
244  // Set decay
245  double mass[2] = {mc, mn};
246  bool permitted = fPhaseSpaceGenerator.SetDecay(p4H, 2, mass);
247  assert(permitted);
248 
249  // Get the maximum weight
250  double wmax = -1;
251  for(int i=0; i<200; i++) {
252  double w = fPhaseSpaceGenerator.Generate();
253  wmax = TMath::Max(wmax,w);
254  }
255 
256  if(wmax>0) {
257  wmax *= 2;
258 
259  // Generate unweighted decay
260  bool accept_decay=false;
261  unsigned int idecay_try=0;
262  while(!accept_decay)
263  {
264  idecay_try++;
265 
266  if(idecay_try>kMaxUnweightDecayIterations) {
267  LOG("CharmHad", pWARN)
268  << "Couldn't generate an unweighted phase space decay after "
269  << idecay_try << " attempts";
270  }
271  double w = fPhaseSpaceGenerator.Generate();
272  if(w > wmax) {
273  LOG("CharmHad", pWARN)
274  << "Decay weight = " << w << " > max decay weight = " << wmax;
275  }
276  double gw = wmax * rnd->RndHadro().Rndm();
277  accept_decay = (gw<=w);
278 
279  if(accept_decay) {
280  used_lowW_strategy = true;
281  TLorentzVector * p4 = fPhaseSpaceGenerator.GetDecay(0);
282  p4C = *p4;
283  ch_pdg = chrm_pdg;
284  fs_nucleon_pdg = remn_pdg;
285  }
286  } // decay loop
287  }//wmax>0
288 
289  }// allowed decay
290  } // alt low-W strategy
291 
292  // ....................................................................
293  // Check success in generating the charm hadron & compute 4p for
294  // remnant system
295  //
296  if(ch_pdg==-1){
297  LOG("CharmHad", pWARN)
298  << "Couldn't generate charm hadron for: " << *interaction;
299  return 0;
300  }
301 
302  TLorentzVector p4R = p4H - p4C;
303  double WR = p4R.M();
304  double MC = pdglib->Find(ch_pdg)->Mass();
305 
306  LOG("CharmHad", pNOTICE) << "Remnant hadronic system mass = " << WR;
307 
308  // ....................................................................
309  // Handle case where the user doesn't want to remnant system to be
310  // hadronized (add as 'hadronic blob')
311  //
312  if(fCharmOnly) {
313  // Create particle list (fragmentation record)
314  TClonesArray * particle_list = new TClonesArray("TMCParticle", 2);
315  particle_list->SetOwner(true);
316 
317  // insert the generated particles
318  new ((*particle_list)[0]) TMCParticle (1,ch_pdg,
319  -1,-1,-1, p4C.Px(),p4C.Py(),p4C.Pz(),p4C.E(),MC, 0,0,0,0,0);
320  new ((*particle_list)[1]) TMCParticle (1,kPdgHadronicBlob,
321  -1,-1,-1, p4R.Px(),p4R.Py(),p4R.Pz(),p4R.E(),WR, 0,0,0,0,0);
322 
323  return particle_list;
324  }
325 
326  // ....................................................................
327  // Handle case where the remnant system is already known and doesn't
328  // have to be hadronized. That happens when (close to the W threshold)
329  // the hadronic system was generated by a simple 2-body decay
330  //
331  if(used_lowW_strategy) {
332  // Create particle list (fragmentation record)
333  TClonesArray * particle_list = new TClonesArray("TMCParticle", 3);
334  particle_list->SetOwner(true);
335 
336  // insert the generated particles
337  new ((*particle_list)[0]) TMCParticle (1,ch_pdg,
338  -1,-1,-1, p4C.Px(),p4C.Py(),p4C.Pz(),p4C.E(),MC, 0,0,0,0,0);
339  new ((*particle_list)[1]) TMCParticle (11,kPdgHadronicBlob,
340  -1,2,2, p4R.Px(),p4R.Py(),p4R.Pz(),p4R.E(),WR, 0,0,0,0,0);
341  new ((*particle_list)[2]) TMCParticle (1,fs_nucleon_pdg,
342  1,-1,-1, p4R.Px(),p4R.Py(),p4R.Pz(),p4R.E(),WR, 0,0,0,0,0);
343 
344  return particle_list;
345  }
346 
347  // ....................................................................
348  // --------------------------------------------------------------------
349  // Hadronize non-charm hadronic blob using PYTHIA/JETSET
350  // --------------------------------------------------------------------
351  // ....................................................................
352 
353  // Create output event record
354  // Insert the generated charm hadron & the hadronic (non-charm) blob.
355  // In this case the hadronic blob is entered as a pre-fragm. state.
356 
357  TClonesArray * particle_list = new TClonesArray("TMCParticle");
358  particle_list->SetOwner(true);
359 
360  new ((*particle_list)[0]) TMCParticle (1,ch_pdg,
361  -1,-1,-1, p4C.Px(),p4C.Py(),p4C.Pz(),p4C.E(),MC, 0,0,0,0,0);
362  new ((*particle_list)[1]) TMCParticle (11,kPdgHadronicBlob,
363  -1,2,3, p4R.Px(),p4R.Py(),p4R.Pz(),p4R.E(),WR, 0,0,0,0,0);
364 
365  unsigned int rpos =2; // offset in event record
366 
367  bool use_pythia = (WR>1.5);
368 
369 /*
370  // Determining quark systems to input to PYTHIA based on simple quark model
371  // arguments
372  //
373  // Neutrinos
374  // ------------------------------------------------------------------
375  // Scattering off valence q
376  // ..................................................................
377  // p: [uu]+d
378  // |--> c --> D0 <c+\bar(u)> : [u]
379  // --> D+ <c+\bar(d)> : [d]
380  // --> Ds+ <c+\bar(s)> : [s]
381  // --> Lamda_c+ <c+ud > : [\bar(ud)]
382  //
383  // (for n: [uu] -> 50%[ud]_{0} + 50%[ud]_{1})
384  //
385  // Scattering off sea q
386  // ..................................................................
387  // p: [uud] + [\bar(d)]d (or)
388  // [\bar(s)]s
389  // |--> c --> D0 <c+\bar(u)> : [u]
390  // --> D+ <c+\bar(d)> : [d]
391  // --> Ds+ <c+\bar(s)> : [s]
392  // --> Lamda_c+ <c+ud > : [\bar(ud)]
393  // Anti-Neutrinos
394  // ------------------------------------------------------------------
395  // Scattering off sea q
396  // ..................................................................
397  // p: [uud] + [d] \bar(d) (or)
398  // [s] \bar(s)
399  // |----> \bar(c) --> \bar(D0) <\bar(c)+u> : [\bar(u)]
400  // --> D- <\bar(c)+d> : [\bar(d)]
401  // --> Ds- <\bar(c)+s> : [\bar(s)]
402  // [Summary]
403  // Qq
404  // | v + p [val/d] --> D0 + { u uu }(+2) / u,uu
405  // | v + p [val/d] --> D+ + { d uu }(+1) / d,uu
406  // | v + p [val/d] --> Ds+ + { s uu }(+1) / s,uu
407  // | v + p [val/d] --> Lc+ + { \bar(ud) uu }(+1) / \bar(d),u
408  // | v + n [val/d] --> D0 + { u ud }(+1) / u,ud
409  // | v + n [val/d] --> D+ + { d ud }( 0) / d,ud
410  // | v + n [val/d] --> Ds+ + { s ud }( 0) / s,ud
411  // | v + n [val/d] --> Lc+ + { \bar(ud) ud }( 0) / \bar(d),d
412  // | v + p [sea/d] --> D0 + { uud \bar(d) u }(+2) / u,uu
413  // | v + p [sea/d] --> D+ + { uud \bar(d) d }(+1) / d,uu
414  // | v + p [sea/d] --> Ds+ + { uud \bar(d) s }(+1) / s,uu
415  // | v + p [sea/d] --> Lc+ + { uud \bar(d) \bar(ud) }(+1) / \bar(d),u
416  // | v + n [sea/d] --> D0 + { udd \bar(d) u }(+1) / u,ud
417  // | v + n [sea/d] --> D+ + { udd \bar(d) d }( 0) / d,ud
418  // | v + n [sea/d] --> Ds+ + { udd \bar(d) s }( 0) / s,ud
419  // | v + n [sea/d] --> Lc+ + { udd \bar(d) \bar(ud) }( 0) / \bar(d),d
420  // | v + p [sea/s] --> D0 + { uud \bar(s) u }(+2) / u,uu
421  // | v + p [sea/s] --> D+ + { uud \bar(s) d }(+1) / d,uu
422  // | v + p [sea/s] --> Ds+ + { uud \bar(s) s }(+1) / s,uu
423  // | v + p [sea/s] --> Lc+ + { uud \bar(s) \bar(ud) }(+1) / \bar(d),u
424  // | v + n [sea/s] --> D0 + { udd \bar(s) u }(+1) / u,ud
425  // | v + n [sea/s] --> D+ + { udd \bar(s) d }( 0) / d,ud
426  // | v + n [sea/s] --> Ds+ + { udd \bar(s) s }( 0) / s,ud
427  // | v + n [sea/s] --> Lc+ + { udd \bar(s) \bar(ud) }( 0) / \bar(d),d
428 
429  // | \bar(v) + p [sea/\bar(d)] --> \bar(D0) + { uud d \bar(u) }( 0) / d,ud
430  // | \bar(v) + p [sea/\bar(d)] --> D- + { uud d \bar(d) }(+1) / d,uu
431  // | \bar(v) + p [sea/\bar(d)] --> Ds- + { uud d \bar(s) }(+1) / d,uu
432  // | \bar(v) + n [sea/\bar(d)] --> \bar(D0) + { udd d \bar(u) }(-1) / d,dd
433  // | \bar(v) + n [sea/\bar(d)] --> D- + { udd d \bar(d) }( 0) / d,ud
434  // | \bar(v) + n [sea/\bar(d)] --> Ds- + { udd d \bar(s) }( 0) / d,ud
435  // | \bar(v) + p [sea/\bar(s)] --> \bar(D0) + { uud s \bar(u) }( 0) / d,ud
436  // | \bar(v) + p [sea/\bar(s)] --> D- + { uud s \bar(d) }(+1) / d,uu
437  // | \bar(v) + p [sea/\bar(s)] --> Ds- + { uud s \bar(s) }(+1) / d,uu
438  // | \bar(v) + n [sea/\bar(s)] --> \bar(D0) + { udd s \bar(u) }(-1) / d,dd
439  // | \bar(v) + n [sea/\bar(s)] --> D- + { udd s \bar(d) }( 0) / d,ud
440  // | \bar(v) + n [sea/\bar(s)] --> Ds- + { udd s \bar(s) }( 0) / d,ud
441  //
442  //
443  // Taking some short-cuts below :
444  // In the process of obtaining 2 q systems (while conserving the charge) I might tread
445  // d,s or \bar(d),\bar(s) as the same
446  // In the future I should perform the first steps of the multi-q hadronization manualy
447  // (to reduce the number of q's input to PYTHIA) or use py3ent_(), py4ent_() ...
448  //
449 */
450 
451  if(use_pythia) {
452  int qrkSyst1 = 0;
453  int qrkSyst2 = 0;
454  if(isnu||isdm) { // neutrinos
455  if(ch_pdg==kPdgLambdaPc) {
456  if(isp) { qrkSyst1 = kPdgAntiDQuark; qrkSyst2 = kPdgUQuark; }
457  if(isn) { qrkSyst1 = kPdgAntiDQuark; qrkSyst2 = kPdgDQuark; }
458  } else {
459  if(isp) { qrkSyst2 = kPdgUUDiquarkS1; }
460  if(isn) { qrkSyst2 = (rnd->RndHadro().Rndm()<0.5) ? kPdgUDDiquarkS0 : kPdgUDDiquarkS1; }
461  if (ch_pdg==kPdgD0 ) { qrkSyst1 = kPdgUQuark; }
462  if (ch_pdg==kPdgDP ) { qrkSyst1 = kPdgDQuark; }
463  if (ch_pdg==kPdgDPs ) { qrkSyst1 = kPdgSQuark; }
464  }
465  }
466  if(isnub) { // antineutrinos
467  qrkSyst1 = kPdgDQuark;
468  if (isp && ch_pdg==kPdgAntiD0) { qrkSyst2 = (rnd->RndHadro().Rndm()<0.5) ? kPdgUDDiquarkS0 : kPdgUDDiquarkS1; }
469  if (isp && ch_pdg==kPdgDM ) { qrkSyst2 = kPdgUUDiquarkS1; }
470  if (isp && ch_pdg==kPdgDMs ) { qrkSyst2 = kPdgUUDiquarkS1; }
471  if (isn && ch_pdg==kPdgAntiD0) { qrkSyst2 = kPdgDDDiquarkS1; }
472  if (isn && ch_pdg==kPdgDM ) { qrkSyst2 = (rnd->RndHadro().Rndm()<0.5) ? kPdgUDDiquarkS0 : kPdgUDDiquarkS1; }
473  if (isn && ch_pdg==kPdgDMs ) { qrkSyst2 = (rnd->RndHadro().Rndm()<0.5) ? kPdgUDDiquarkS0 : kPdgUDDiquarkS1; }
474  }
475  if(qrkSyst1 == 0 && qrkSyst2 == 0) {
476  LOG("CharmHad", pWARN)
477  << "Couldn't generate quark systems for PYTHIA in: " << *interaction;
478  return 0;
479  }
480 
481  //
482  // Run PYTHIA for the hadronization of remnant system
483  //
484  fPythia->SetMDCY(fPythia->Pycomp(kPdgPi0), 1,0); // don't decay pi0
485  fPythia->SetMDCY(fPythia->Pycomp(kPdgP33m1232_DeltaM), 1,1); // decay Delta+
486  fPythia->SetMDCY(fPythia->Pycomp(kPdgP33m1232_Delta0), 1,1); // decay Delta++
487  fPythia->SetMDCY(fPythia->Pycomp(kPdgP33m1232_DeltaP), 1,1); // decay Delta++
488  fPythia->SetMDCY(fPythia->Pycomp(kPdgP33m1232_DeltaPP), 1,1); // decay Delta++
489 // fPythia->SetMDCY(fPythia->Pycomp(kPdgDeltaP), 1,1); // decay Delta+
490 // fPythia->SetMDCY(fPythia->Pycomp(kPdgDeltaPP), 1,1); // decay Delta++
491 
492  int ip = 0;
493  py2ent_(&ip, &qrkSyst1, &qrkSyst2, &WR); // hadronize
494 
495  fPythia->SetMDCY(fPythia->Pycomp(kPdgPi0),1,1); // restore
496 
497  //-- Get PYTHIA's LUJETS event record
498  TClonesArray * remnants = 0;
499  fPythia->GetPrimaries();
500  remnants = dynamic_cast<TClonesArray *>(fPythia->ImportParticles("All"));
501  if(!remnants) {
502  LOG("CharmHad", pWARN) << "Couldn't hadronize (non-charm) remnants!";
503  return 0;
504  }
505 
506  // PYTHIA performs the hadronization at the *remnant hadrons* centre of mass
507  // frame (not the hadronic centre of mass frame).
508  // Boost all hadronic blob fragments to the HCM', fix their mother/daughter
509  // assignments and add them to the fragmentation record.
510 
511  TVector3 rmnbeta = +1 * p4R.BoostVector(); // boost velocity
512 
513  TMCParticle * remn = 0; // remnant
514  TMCParticle * bremn = 0; // boosted remnant
515  TIter remn_iter(remnants);
516  while( (remn = (TMCParticle *) remn_iter.Next()) ) {
517 
518  // insert and get a pointer to inserted object for mods
519  bremn = new ((*particle_list)[rpos++]) TMCParticle (*remn);
520 
521  // boost
522  TLorentzVector p4(remn->GetPx(),remn->GetPy(),remn->GetPz(),remn->GetEnergy());
523  p4.Boost(rmnbeta);
524  bremn -> SetPx (p4.Px());
525  bremn -> SetPy (p4.Py());
526  bremn -> SetPz (p4.Pz());
527  bremn -> SetEnergy (p4.E() );
528 
529  // handle insertion of charmed hadron
530  int jp = bremn->GetParent();
531  int ifc = bremn->GetFirstChild();
532  int ilc = bremn->GetLastChild();
533  bremn -> SetParent ( (jp == 0 ? 1 : jp +1) );
534  bremn -> SetFirstChild ( (ifc == 0 ? -1 : ifc+1) );
535  bremn -> SetLastChild ( (ilc == 0 ? -1 : ilc+1) );
536  }
537  } // use_pythia
538 
539  // ....................................................................
540  // Hadronizing low-W non-charm hadronic blob using a phase space decay
541  // ....................................................................
542 
543  else {
544  // Just a small fraction of events (low-W remnant syste) causing trouble
545  // to PYTHIA/JETSET
546  // Set a 2-body N+pi system that matches the remnant system charge and
547  // do a simple phase space decay
548  //
549  // q(remn) remn/syst
550  // +2 : (p pi+)
551  // +1 : 50%(p pi0) + 50% n pi+
552  // 0 : 50%(p pi-) + 50% n pi0
553  // -1 : (n pi-)
554  //
555  double qfsl = interaction->FSPrimLepton()->Charge() / 3.;
556  double qinit = pdglib->Find(nuc_pdg)->Charge() / 3.;
557  double qch = pdglib->Find(ch_pdg)->Charge() / 3.;
558  int Q = (int) (qinit - qfsl - qch); // remnant hadronic system charge
559 
560  bool allowdup=true;
561  PDGCodeList pd(allowdup);
562  if(Q==2) {
563  pd.push_back(kPdgProton); pd.push_back(kPdgPiP); }
564  else if (Q==1) {
565  if(rnd->RndHadro().Rndm()<0.5) {
566  pd.push_back(kPdgProton); pd.push_back(kPdgPi0); }
567  else {
568  pd.push_back(kPdgNeutron); pd.push_back(kPdgPiP); }
569  }
570  else if (Q==0) {
571  if(rnd->RndHadro().Rndm()<0.5) {
572  pd.push_back(kPdgProton); pd.push_back(kPdgPiM); }
573  else {
574  pd.push_back(kPdgNeutron); pd.push_back(kPdgPi0); }
575  }
576  else if (Q==-1) {
577  pd.push_back(kPdgNeutron); pd.push_back(kPdgPiM); }
578 
579  double mass[2] = {
580  pdglib->Find(pd[0])->Mass(), pdglib->Find(pd[1])->Mass()
581  };
582 
583  // Set the decay
584  bool permitted = fPhaseSpaceGenerator.SetDecay(p4R, 2, mass);
585  if(!permitted) {
586  LOG("CharmHad", pERROR) << " *** Phase space decay is not permitted";
587  return 0;
588  }
589  // Get the maximum weight
590  double wmax = -1;
591  for(int i=0; i<200; i++) {
592  double w = fPhaseSpaceGenerator.Generate();
593  wmax = TMath::Max(wmax,w);
594  }
595  if(wmax<=0) {
596  LOG("CharmHad", pERROR) << " *** Non-positive maximum weight";
597  LOG("CharmHad", pERROR) << " *** Can not generate an unweighted phase space decay";
598  return 0;
599  }
600 
601  LOG("CharmHad", pINFO)
602  << "Max phase space gen. weight @ current hadronic system: " << wmax;
603 
604  // *** generating an un-weighted decay ***
605  wmax *= 1.3;
606  bool accept_decay=false;
607  unsigned int idectry=0;
608  while(!accept_decay)
609  {
610  idectry++;
611  if(idectry>kMaxUnweightDecayIterations) {
612  // report, clean-up and return
613  LOG("Char,Had", pWARN)
614  << "Couldn't generate an unweighted phase space decay after "
615  << itry << " attempts";
616  return 0;
617  }
618  double w = fPhaseSpaceGenerator.Generate();
619  if(w > wmax) {
620  LOG("CharmHad", pWARN)
621  << "Decay weight = " << w << " > max decay weight = " << wmax;
622  }
623  double gw = wmax * rnd->RndHadro().Rndm();
624  accept_decay = (gw<=w);
625  LOG("CharmHad", pDEBUG)
626  << "Decay weight = " << w << " / R = " << gw << " - accepted: " << accept_decay;
627  }
628  for(unsigned int i=0; i<2; i++) {
629  int pdgc = pd[i];
630  TLorentzVector * p4d = fPhaseSpaceGenerator.GetDecay(i);
631  new ( (*particle_list)[rpos+i] ) TMCParticle(
632  1,pdgc,1,-1,-1,p4d->Px(),p4d->Py(),p4d->Pz(),p4d->Energy(),
633  mass[i],0,0,0,0,0);
634  }
635  }
636 
637  //-- Print & return the fragmentation record
638  //utils::fragmrec::Print(particle_list);
639  return particle_list;
640 }
const int kPdgAntiD0
Definition: PDGCodes.h:161
const double kPi
const int kPdgP33m1232_DeltaPP
Definition: PDGCodes.h:91
const int kPdgDPs
Definition: PDGCodes.h:162
const int kPdgUUDiquarkS1
Definition: PDGCodes.h:58
double W(bool selected=false) const
Definition: Kinematics.cxx:167
TPythia6 * fPythia
remnant (non-charm) hadronizer
bool IsNeutrino(int pdgc)
Definition: PDGUtils.cxx:108
const XML_Char * target
Definition: expat.h:268
#define pERROR
Definition: Messenger.h:60
static const double kNucleonMass
Definition: Constants.h:78
static RandomGen * Instance()
Access instance.
Definition: RandomGen.cxx:79
int HitNucPdg(void) const
Definition: Target.cxx:321
virtual double GenerateZ(void) const =0
const int kPdgHadronicBlob
Definition: PDGCodes.h:188
const int kPdgUQuark
Definition: PDGCodes.h:42
Generated/set kinematical variables for an event.
Definition: Kinematics.h:40
string P4AsString(const TLorentzVector *p)
Definition: PrintUtils.cxx:34
static const unsigned int kMaxUnweightDecayIterations
Definition: Controls.h:61
bool IsDarkMatter(int pdgc)
Definition: PDGUtils.cxx:125
const TLorentzVector & HadSystP4(void) const
Definition: Kinematics.h:67
TString ip
Definition: loadincs.C:5
Double_t beta
A singleton holding random number generator classes. All random number generation in GENIE should tak...
Definition: RandomGen.h:30
void py2ent_(int *, int *, int *, double *)
const int kPdgSQuark
Definition: PDGCodes.h:46
A list of PDG codes.
Definition: PDGCodeList.h:33
const int kPdgP33m1232_DeltaP
Definition: PDGCodes.h:90
const int kPdgP33m1232_DeltaM
Definition: PDGCodes.h:88
bool IsNeutron(int pdgc)
Definition: PDGUtils.cxx:304
bool IsProton(int pdgc)
Definition: PDGUtils.cxx:299
#define LOG(stream, priority)
A macro that returns the requested log4cpp::Category appending a string (using the FILE...
Definition: Messenger.h:97
const int kPdgUDDiquarkS1
Definition: PDGCodes.h:57
bool IsAntiNeutrino(int pdgc)
Definition: PDGUtils.cxx:116
const int kPdgAntiDQuark
Definition: PDGCodes.h:45
A Neutrino Interaction Target. Is a transparent encapsulation of quite different physical systems suc...
Definition: Target.h:41
const FragmentationFunctionI * fFragmFunc
charm hadron fragmentation func
int ProbePdg(void) const
Definition: InitialState.h:65
const int kPdgLambdaPc
Definition: PDGCodes.h:83
const int kPdgPiP
Definition: PDGCodes.h:135
const int kPdgPi0
Definition: PDGCodes.h:137
const int kPdgDQuark
Definition: PDGCodes.h:44
static const double kASmallNum
Definition: Controls.h:40
#define pINFO
Definition: Messenger.h:63
const int kPdgUDDiquarkS0
Definition: PDGCodes.h:56
z
Definition: test.py:28
#define pWARN
Definition: Messenger.h:61
const int kPdgP33m1232_Delta0
Definition: PDGCodes.h:89
bool fCharmOnly
don&#39;t hadronize non-charm blob
TParticlePDG * FSPrimLepton(void) const
final state primary lepton
const int kPdgDP
Definition: PDGCodes.h:158
TRandom3 & RndHadro(void) const
rnd number generator used by hadronization models
Definition: RandomGen.h:54
static PDGLibrary * Instance(void)
Definition: PDGLibrary.cxx:43
static const double kPionMass
Definition: Constants.h:74
Singleton class to load & serve a TDatabasePDG.
Definition: PDGLibrary.h:30
Var Sqrt(const Var &v)
Use to take sqrt of a var.
Definition: Var.cxx:326
int GenerateCharmHadron(int nupdg, double EvLab) const
const int kPdgDMs
Definition: PDGCodes.h:163
const int kPdgDM
Definition: PDGCodes.h:159
TParticlePDG * Find(int pdgc)
Definition: PDGLibrary.cxx:61
assert(nhit_max >=nhit_nbins)
const int kPdgPiM
Definition: PDGCodes.h:136
const int kPdgProton
Definition: PDGCodes.h:65
#define pNOTICE
Definition: Messenger.h:62
const Target & Tgt(void) const
Definition: InitialState.h:67
static const unsigned int kRjMaxIterations
Definition: Controls.h:27
void kinematics()
Definition: kinematics.C:10
Float_t w
Definition: plot.C:20
#define W(x)
double ProbeE(RefFrame_t rf) const
const int kPdgNeutron
Definition: PDGCodes.h:67
const int kPdgD0
Definition: PDGCodes.h:160
TF1 * fCharmPT2pdf
charm hadron pT^2 pdf
TGenPhaseSpace fPhaseSpaceGenerator
a phase space generator
Initial State information.
Definition: InitialState.h:49
#define pDEBUG
Definition: Messenger.h:64
const int kPdgDDDiquarkS1
Definition: PDGCodes.h:55
virtual const AlgId& genie::Algorithm::Id ( void  ) const
inlinevirtualinherited

Get algorithm ID.

Definition at line 98 of file Algorithm.h.

References genie::Algorithm::fID.

Referenced by genie::KineGeneratorWithCache::AccessCacheBranch(), genie::QELEventGeneratorSM::AccessCacheBranch2(), genie::QELEventGeneratorSM::AccessCacheBranchDiffv(), genie::InteractionListAssembler::AssembleInteractionList(), genie::XSecAlgorithmMap::BuildMap(), genie::InteractionGeneratorMap::BuildMap(), genie::XSecSplineList::BuildSplineKey(), genie::DISXSec::CacheBranchName(), genie::ReinSehgalRESXSecWithCache::CacheBranchName(), genie::DMDISXSec::CacheBranchName(), genie::ReinSehgalRESXSecWithCacheFast::CacheBranchName(), genie::Algorithm::Compare(), genie::RESKinematicsGenerator::ComputeMaxXSec(), genie::COHElKinematicsGenerator::ComputeMaxXSec(), genie::SKKinematicsGenerator::ComputeMaxXSec(), genie::COHKinematicsGenerator::ComputeMaxXSec(), genie::Algorithm::Configure(), genie::GEVGDriver::CreateSplines(), genie::QPMDISPXSec::DISRESJoinSuppressionFactor(), genie::QPMDMDISPXSec::DMDISRESJoinSuppressionFactor(), genie::AlgConfigPool::FindRegistry(), genie::AlgFactory::ForceReconfiguration(), genie::GEVGDriver::GenerateEvent(), GetAlgorithms(), genie::LwlynSmithQELCCPXSec::Integral(), genie::NievesQELCCPXSec::Integral(), genie::COHXSec::Integrate(), genie::QPMDISPXSec::LoadConfig(), genie::QPMDMDISPXSec::LoadConfig(), genie::EventGenerator::LoadConfig(), genie::EventGeneratorListAssembler::LoadGenerator(), main(), genie::COHKinematicsGenerator::MaxXSec_AlvarezRuso(), genie::XSecAlgorithmMap::Print(), genie::InteractionGeneratorMap::Print(), genie::AlgFactory::Print(), genie::COHHadronicSystemGenerator::ProcessEventRecord(), genie::COHPrimaryLeptonGenerator::ProcessEventRecord(), genie::COHKinematicsGenerator::ProcessEventRecord(), genie::MECGenerator::ProcessEventRecord(), genie::EventGenerator::ProcessEventRecord(), genie::KNOPythiaHadronization::SelectHadronizer(), TestPythiaTauDecays(), and genie::GEVGDriver::UseSplines().

98 { return fID; }
AlgId fID
algorithm name and configuration set
Definition: Algorithm.h:156
void CharmHadronization::Initialize ( void  ) const
virtual

define the HadronizationModelI interface

Implements genie::HadronizationModelI.

Definition at line 78 of file CharmHadronization.cxx.

References fPythia.

Referenced by CharmHadronization().

79 {
80  fPythia = TPythia6::Instance();
81 }
TPythia6 * fPythia
remnant (non-charm) hadronizer
void Algorithm::Initialize ( void  )
protectedinherited

Definition at line 343 of file Algorithm.cxx.

Referenced by genie::Algorithm::AllowReconfig().

344 {
345 // Algorithm initialization
346 //
347  fAllowReconfig = true;
348  fOwnsSubstruc = false;
349  fConfig = 0;
350  fOwnedSubAlgMp = 0;
351 }
AlgMap * fOwnedSubAlgMp
local pool for owned sub-algs (taken out of the factory pool)
Definition: Algorithm.h:167
bool fOwnsSubstruc
true if it owns its substructure (sub-algs,...)
Definition: Algorithm.h:155
Registry * fConfig
Summary configuration derived from fConvVect, not necessarily allocated.
Definition: Algorithm.h:194
void CharmHadronization::LoadConfig ( void  )
private

Definition at line 695 of file CharmHadronization.cxx.

References ana::assert(), fCharmOnly, fCharmPT2pdf, fD0BarFrac, fD0FracSpl, fDmFrac, fDpFracSpl, fDsFracSpl, fFragmFunc, genie::Algorithm::GetParam(), nc, and genie::Algorithm::SubAlg().

Referenced by Configure().

696 {
697 
698  bool hadronize_remnants = true ;
699  GetParam( "HadronizeRemnants", hadronize_remnants, false ) ;
700 
701  fCharmOnly = ! hadronize_remnants ;
702 
703  //-- Get a fragmentation function
704  fFragmFunc = dynamic_cast<const FragmentationFunctionI *> (
705  this->SubAlg("FragmentationFunc"));
707 
708  fCharmPT2pdf = new TF1("fCharmPT2pdf", "exp(-0.213362-6.62464*x)",0,0.6);
709  // stop ROOT from deleting this object of its own volition
710  gROOT->GetListOfFunctions()->Remove(fCharmPT2pdf);
711 
712  // neutrino charm fractions: D^0, D^+, Ds^+ (remainder: Lamda_c^+)
713  //
714  const int nc = 15;
715  double ec[nc] = {0.,5.,10.,15.,20.,25.,30.,35.,40.,50.,60.,70.,80.,90.,100.};
716 
717  double d0frac[nc] = { .000, .320, .460, .500, .520, .530, .540, .540,
718  .540, .550, .550, .560, .570, .580, .600 };
719  double dpfrac[nc] = { .000, .120, .180, .200, .200, .210, .210, .210,
720  .210, .210, .220, .220, .220, .230, .230 };
721  double dsfrac[nc] = { .000, .054, .078, .130, .130, .140, .140, .140,
722  .140, .140, .140, .140, .140, .150, .150 };
723 
724  fD0FracSpl = new Spline(nc, ec, d0frac);
725  fDpFracSpl = new Spline(nc, ec, dpfrac);
726  fDsFracSpl = new Spline(nc, ec, dsfrac);
727 
728  // anti-neutrino charm fractions: bar(D^0), D^-, (remainder: Ds^-)
729  //
730  fD0BarFrac = 0.667;
731  fDmFrac = 0.222;
732 }
double fDmFrac
nubar D- charm fraction
Spline * fDpFracSpl
nu charm fraction vs Ev: D+
A numeric analysis tool class for interpolating 1-D functions.
Definition: Spline.h:47
const FragmentationFunctionI * fFragmFunc
charm hadron fragmentation func
double fD0BarFrac
nubar {D0} charm fraction
bool fCharmOnly
don&#39;t hadronize non-charm blob
Pure abstract base class. Defines the FragmentationFunctionI interface to be implemented by any algor...
enum BeamMode nc
assert(nhit_max >=nhit_nbins)
Spline * fDsFracSpl
nu charm fraction vs Ev: Ds+
bool GetParam(const RgKey &name, T &p, bool is_top_call=true) const
Spline * fD0FracSpl
nu charm fraction vs Ev: D0
TF1 * fCharmPT2pdf
charm hadron pT^2 pdf
const Algorithm * SubAlg(const RgKey &registry_key) const
Definition: Algorithm.cxx:353
int Algorithm::MergeTopRegistry ( const Registry r)
protectedinherited

Merge with top level registry if first reg of the vector is owned Otherwise an owned copy is added as a top registry

Definition at line 618 of file Algorithm.cxx.

618  {
619 
620  if ( fOwnerships.empty() ) {
621 
622  // this algorithm is not configured right now, the incoming registry is the only configuration
623  Registry * p = new Registry( r ) ;
624  AddTopRegistry( p ) ;
625 
626  return 1 ;
627  }
628 
629  if ( fOwnerships[0] ) {
630  //the top registry is owned: it can be changed with no consequences for other algorithms
631  fConfVect[0] -> Merge( r ) ;
632  }
633  else {
634  // The top registry is not owned so it cannot be changed
635  // The registry will be added with top priority
636 
637  Registry * p = new Registry( r ) ;
638  AddTopRegistry( p ) ;
639  }
640 
641  // The configuration has changed so the summary is not updated anymore and must be deleted
642  if ( fConfig ) {
643  delete fConfig ;
644  fConfig = 0 ;
645  }
646 
647  return fConfVect.size() ;
648 }
const char * p
Definition: xmltok.h:285
int AddTopRegistry(Registry *rp, bool owns=true)
add registry with top priority, also update ownership
Definition: Algorithm.cxx:585
vector< Registry * > fConfVect
Definition: Algorithm.h:161
A registry. Provides the container for algorithm configuration parameters.
Definition: Registry.h:66
vector< bool > fOwnerships
ownership for every registry in fConfVect
Definition: Algorithm.h:164
Registry * fConfig
Summary configuration derived from fConvVect, not necessarily allocated.
Definition: Algorithm.h:194
TH1D * CharmHadronization::MultiplicityProb ( const Interaction ,
Option_t *  opt = "" 
) const
virtual

Implements genie::HadronizationModelI.

Definition at line 653 of file CharmHadronization.cxx.

655 {
656  return 0;
657 }
void Algorithm::Print ( ostream &  stream) const
virtualinherited

Print algorithm info.

Definition at line 323 of file Algorithm.cxx.

References GetConfig(), and r().

Referenced by genie::Algorithm::AllowReconfig(), and genie::operator<<().

324 {
325  // print algorithm name & parameter-set
326  stream << "\nAlgorithm Key: " << this->fID.Key();
327  stream << " - Owns Substruc: " << ((fOwnsSubstruc) ? "[true]" : "[false]");
328 
329  // print algorithm configuration
330  const Registry & r = this->GetConfig();
331  stream << r;
332 
333  if(fOwnsSubstruc) {
334  AlgMapConstIter iter = fOwnedSubAlgMp->begin();
335  for(; iter!=fOwnedSubAlgMp->end(); ++iter) {
336  Algorithm * alg = iter->second;
337  stream << "<Next algorithm is owned by : " << this->fID.Key() << ">";
338  stream << *alg;
339  }
340  }
341 }
AlgMap * fOwnedSubAlgMp
local pool for owned sub-algs (taken out of the factory pool)
Definition: Algorithm.h:167
bool fOwnsSubstruc
true if it owns its substructure (sub-algs,...)
Definition: Algorithm.h:155
Algorithm abstract base class.
Definition: Algorithm.h:54
AlgId fID
algorithm name and configuration set
Definition: Algorithm.h:156
virtual const Registry & GetConfig(void) const
Definition: Algorithm.cxx:254
map< string, Algorithm * >::const_iterator AlgMapConstIter
Definition: Algorithm.h:51
A registry. Provides the container for algorithm configuration parameters.
Definition: Registry.h:66
TRandom3 r(0)
string Key(void) const
Definition: AlgId.h:47
PDGCodeList * CharmHadronization::SelectParticles ( const Interaction ) const
virtual

Implements genie::HadronizationModelI.

Definition at line 647 of file CharmHadronization.cxx.

649 {
650  return 0;
651 }
void Algorithm::SetId ( const AlgId id)
virtualinherited

Set algorithm ID.

Definition at line 313 of file Algorithm.cxx.

Referenced by genie::Algorithm::AllowReconfig().

314 {
315  fID.Copy(id);
316 }
AlgId fID
algorithm name and configuration set
Definition: Algorithm.h:156
void Copy(const AlgId &id)
Definition: AlgId.cxx:78
void Algorithm::SetId ( string  name,
string  config 
)
virtualinherited

Definition at line 318 of file Algorithm.cxx.

319 {
320  fID.SetId(name, config);
321 }
const XML_Char * name
Definition: expat.h:151
Definition: config.py:1
AlgId fID
algorithm name and configuration set
Definition: Algorithm.h:156
void SetId(string name, string config="")
Definition: AlgId.cxx:70
const Algorithm * Algorithm::SubAlg ( const RgKey registry_key) const
inherited

Access the sub-algorithm pointed to by the input key, either from the local pool or from AlgFactory's pool

Definition at line 353 of file Algorithm.cxx.

References ana::assert(), genie::AlgFactory::GetAlgorithm(), genie::AlgFactory::Instance(), LOG, pERROR, and pINFO.

Referenced by genie::Algorithm::AllowReconfig(), genie::utils::gsl::FullQELdXSec::FullQELdXSec(), genie::NewQELXSec::Integrate(), genie::HadronTransporter::LoadConfig(), genie::NucleonDecayPrimaryVtxGenerator::LoadConfig(), genie::IBDXSecMap::LoadConfig(), genie::COHElasticPXSec::LoadConfig(), genie::DISHadronicSystemGenerator::LoadConfig(), genie::EmpiricalMECPXSec2015::LoadConfig(), genie::SlowRsclCharmDISPXSecLO::LoadConfig(), genie::AhrensNCELPXSec::LoadConfig(), genie::AlamSimoAtharVacasSKPXSec2014::LoadConfig(), genie::UnstableParticleDecayer::LoadConfig(), genie::ReinDFRPXSec::LoadConfig(), genie::PythiaHadronization::LoadConfig(), genie::BYPDF::LoadConfig(), genie::QPMDISPXSec::LoadConfig(), genie::AlvarezRusoCOHPiPXSec::LoadConfig(), genie::RosenbluthPXSec::LoadConfig(), genie::StrumiaVissaniIBDPXSec::LoadConfig(), genie::MECGenerator::LoadConfig(), genie::NNBarOscPrimaryVtxGenerator::LoadConfig(), genie::FermiMover::LoadConfig(), genie::AhrensDMELPXSec::LoadConfig(), genie::IMDAnnihilationPXSec::LoadConfig(), genie::QELEventGenerator::LoadConfig(), genie::KNOPythiaHadronization::LoadConfig(), genie::AivazisCharmPXSecLO::LoadConfig(), genie::RESHadronicSystemGenerator::LoadConfig(), genie::P33PaschosLalakulichPXSec::LoadConfig(), genie::BergerSehgalFMCOHPiPXSec2015::LoadConfig(), genie::QPMDMDISPXSec::LoadConfig(), genie::BergerSehgalCOHPiPXSec2015::LoadConfig(), genie::LwlynSmithQELCCPXSec::LoadConfig(), genie::NuElectronPXSec::LoadConfig(), genie::PaisQELLambdaPXSec::LoadConfig(), genie::ReinSehgalCOHPiPXSec::LoadConfig(), genie::NievesSimoVacasMECPXSec2016::LoadConfig(), genie::KovalenkoQELCharmPXSec::LoadConfig(), LoadConfig(), genie::NuclearModelMap::LoadConfig(), genie::EventGenerator::LoadConfig(), genie::SmithMonizQELCCXSec::LoadConfig(), genie::BardinIMDRadCorPXSec::LoadConfig(), genie::QELEventGeneratorSM::LoadConfig(), genie::LwlynSmithFF::LoadConfig(), genie::MartiniEricsonChanfrayMarteauMECPXSec2016::LoadConfig(), genie::ReinSehgalRESPXSec::LoadConfig(), genie::QPMDISStrucFuncBase::LoadConfig(), genie::SmithMonizQELCCPXSec::LoadConfig(), genie::NievesQELCCPXSec::LoadConfig(), genie::HAIntranuke::LoadConfig(), genie::HAIntranuke2018::LoadConfig(), genie::HNIntranuke2018::LoadConfig(), genie::BSKLNBaseRESPXSec2014::LoadConfig(), genie::ReinSehgalSPPPXSec::LoadConfig(), genie::KNOHadronization::LoadConfig(), and genie::EventGeneratorListAssembler::LoadGenerator().

354 {
355 // Returns the sub-algorithm pointed to this algorithm's XML config file using
356 // the the values of the key.
357 // This method asserts the existence of these keys in the XML config.
358 // Note: Since only 1 parameter is used, the key value should contain both the
359 // algorithm name and its configuration set according to the usual scheme:
360 // namespace::algorithm_name/configuration_set
361 //
362  LOG("Algorithm", pINFO)
363  << "Fetching sub-alg within alg: " << this->Id().Key()
364  << " pointed to by key: " << registry_key;
365 
366  //-- if the algorithm owns its substructure:
367  // return the sub-algorithm from the local pool
368  //
369  if(fOwnsSubstruc) {
370  AlgMapConstIter iter = fOwnedSubAlgMp->find(registry_key);
371  if(iter!=fOwnedSubAlgMp->end()) return iter->second;
372  LOG("Algorithm", pERROR)
373  << "Owned sub-alg pointed to by key: " << registry_key
374  << " was not found within alg: " << this->Id().Key();
375  return 0;
376  }
377 
378  //-- if the algorithm does not own its substructure:
379  // return the sub-algorithm from the AlgFactory's pool
380  RgAlg alg ;
381  GetParam( registry_key, alg ) ;
382 
383  LOG("Algorithm", pINFO)
384  << "Registry key: " << registry_key << " points to algorithm: " << alg;
385 
386  // retrieve the Algorithm object from the the Algorithm factory
387  AlgFactory * algf = AlgFactory::Instance();
388  const Algorithm * algbase = algf->GetAlgorithm(alg.name, alg.config);
389  assert(algbase);
390 
391  return algbase;
392 }
#define pERROR
Definition: Messenger.h:60
AlgMap * fOwnedSubAlgMp
local pool for owned sub-algs (taken out of the factory pool)
Definition: Algorithm.h:167
bool fOwnsSubstruc
true if it owns its substructure (sub-algs,...)
Definition: Algorithm.h:155
Algorithm abstract base class.
Definition: Algorithm.h:54
#define LOG(stream, priority)
A macro that returns the requested log4cpp::Category appending a string (using the FILE...
Definition: Messenger.h:97
const Algorithm * GetAlgorithm(const AlgId &algid)
Definition: AlgFactory.cxx:86
#define pINFO
Definition: Messenger.h:63
map< string, Algorithm * >::const_iterator AlgMapConstIter
Definition: Algorithm.h:51
virtual const AlgId & Id(void) const
Get algorithm ID.
Definition: Algorithm.h:98
static AlgFactory * Instance()
Definition: AlgFactory.cxx:75
assert(nhit_max >=nhit_nbins)
bool GetParam(const RgKey &name, T &p, bool is_top_call=true) const
The GENIE Algorithm Factory.
Definition: AlgFactory.h:40
string Key(void) const
Definition: AlgId.h:47
double CharmHadronization::Weight ( void  ) const
virtual

Implements genie::HadronizationModelI.

Definition at line 642 of file CharmHadronization.cxx.

643 {
644  return 1.; // does not generate weighted events
645 }

Member Data Documentation

bool genie::Algorithm::fAllowReconfig
protectedinherited
bool genie::CharmHadronization::fCharmOnly
private

don't hadronize non-charm blob

Definition at line 68 of file CharmHadronization.h.

Referenced by Hadronize(), and LoadConfig().

TF1* genie::CharmHadronization::fCharmPT2pdf
private

charm hadron pT^2 pdf

Definition at line 69 of file CharmHadronization.h.

Referenced by Hadronize(), LoadConfig(), and ~CharmHadronization().

vector<Registry*> genie::Algorithm::fConfVect
protectedinherited

ideally these members should go private Registry will be access only through the GetParam method configurations registries from various sources the order of the vector is the precedence in case of repeated parameters position 0 -> Highest precedence

Definition at line 161 of file Algorithm.h.

double genie::CharmHadronization::fD0BarFrac
private

nubar {D0} charm fraction

Definition at line 74 of file CharmHadronization.h.

Referenced by GenerateCharmHadron(), and LoadConfig().

Spline* genie::CharmHadronization::fD0FracSpl
private

nu charm fraction vs Ev: D0

Definition at line 71 of file CharmHadronization.h.

Referenced by GenerateCharmHadron(), LoadConfig(), and ~CharmHadronization().

double genie::CharmHadronization::fDmFrac
private

nubar D- charm fraction

Definition at line 75 of file CharmHadronization.h.

Referenced by GenerateCharmHadron(), and LoadConfig().

Spline* genie::CharmHadronization::fDpFracSpl
private

nu charm fraction vs Ev: D+

Definition at line 72 of file CharmHadronization.h.

Referenced by GenerateCharmHadron(), LoadConfig(), and ~CharmHadronization().

Spline* genie::CharmHadronization::fDsFracSpl
private

nu charm fraction vs Ev: Ds+

Definition at line 73 of file CharmHadronization.h.

Referenced by GenerateCharmHadron(), LoadConfig(), and ~CharmHadronization().

const FragmentationFunctionI* genie::CharmHadronization::fFragmFunc
private

charm hadron fragmentation func

Definition at line 70 of file CharmHadronization.h.

Referenced by Hadronize(), and LoadConfig().

AlgId genie::Algorithm::fID
protectedinherited

algorithm name and configuration set

Definition at line 156 of file Algorithm.h.

Referenced by genie::Algorithm::Id().

AlgMap* genie::Algorithm::fOwnedSubAlgMp
protectedinherited

local pool for owned sub-algs (taken out of the factory pool)

Definition at line 167 of file Algorithm.h.

vector<bool> genie::Algorithm::fOwnerships
protectedinherited

ownership for every registry in fConfVect

Definition at line 164 of file Algorithm.h.

bool genie::Algorithm::fOwnsSubstruc
protectedinherited

true if it owns its substructure (sub-algs,...)

Definition at line 155 of file Algorithm.h.

TGenPhaseSpace genie::CharmHadronization::fPhaseSpaceGenerator
mutableprivate

a phase space generator

Definition at line 64 of file CharmHadronization.h.

Referenced by Hadronize().

TPythia6* genie::CharmHadronization::fPythia
mutableprivate

remnant (non-charm) hadronizer

Definition at line 76 of file CharmHadronization.h.

Referenced by Hadronize(), and Initialize().

AlgStatus_t genie::Algorithm::fStatus
protectedinherited

algorithm execution status

Definition at line 166 of file Algorithm.h.

Referenced by genie::Algorithm::GetStatus().


The documentation for this class was generated from the following files: