#include "stan/math/prim/scal/meta/VectorBuilder.hpp"
Public Types | |
typedef helper::type | type |
Public Member Functions | |
VectorBuilder (size_t n) | |
T1 & | operator[] (size_t i) |
type | data () |
Public Attributes | |
helper | a |
Private Types | |
typedef VectorBuilderHelper< T1, used, contains_vector< T2, T3, T4, T5, T6, T7 >::value > | helper |
VectorBuilder allocates type T1 values to be used as intermediate values. There are 2 template parameters:
These values are mutable.
Definition at line 28 of file VectorBuilder.hpp.
|
private |
Definition at line 32 of file VectorBuilder.hpp.
typedef helper::type stan::VectorBuilder< used, T1, T2, T3, T4, T5, T6, T7 >::type |
Definition at line 35 of file VectorBuilder.hpp.
|
inlineexplicit |
Definition at line 38 of file VectorBuilder.hpp.
|
inline |
Definition at line 42 of file VectorBuilder.hpp.
References stan::VectorBuilderHelper< T1, used, is_vec >::data().
Referenced by stan::math::bernoulli_rng(), stan::math::beta_rng(), stan::math::binomial_rng(), stan::math::cauchy_rng(), stan::math::chi_square_rng(), stan::math::double_exponential_rng(), stan::math::exp_mod_normal_rng(), stan::math::exponential_rng(), stan::math::frechet_rng(), stan::math::gamma_rng(), stan::math::gumbel_rng(), stan::math::inv_chi_square_rng(), stan::math::inv_gamma_rng(), stan::math::logistic_rng(), stan::math::lognormal_rng(), stan::math::neg_binomial_2_lccdf(), stan::math::neg_binomial_2_lcdf(), stan::math::neg_binomial_2_log_rng(), stan::math::neg_binomial_2_rng(), stan::math::neg_binomial_rng(), stan::math::normal_rng(), stan::math::pareto_rng(), stan::math::pareto_type_2_rng(), stan::math::poisson_log_rng(), stan::math::poisson_rng(), stan::math::rayleigh_rng(), stan::math::scaled_inv_chi_square_rng(), stan::math::skew_normal_rng(), stan::math::student_t_rng(), stan::math::uniform_rng(), stan::math::von_mises_rng(), and stan::math::weibull_rng().
|
inline |
helper stan::VectorBuilder< used, T1, T2, T3, T4, T5, T6, T7 >::a |
Definition at line 36 of file VectorBuilder.hpp.