Solve x^3 + b*x^2 + c*x + d = 0.
Definition at line 218 of file OscCalcAnalytic.cxx.
References osc::analytic::_OscCalc< T >::_P(), std::acos(), b, plot_validation_datamc::c, osc::analytic::_OscCalc< T >::c12, osc::analytic::_OscCalc< T >::c13, osc::analytic::_OscCalc< T >::c23, osc::analytic::_OscCalc< T >::cCP, osc::analytic::_OscCalc< T >::ClearProbCaches(), osc::analytic::cmplx< T, U >::conj(), cube(), d, osc::_IOscCalcAdjustable< T >::fDmsq21, osc::_IOscCalcAdjustable< T >::fDmsq32, osc::analytic::_OscCalc< T >::Hee, osc::analytic::_OscCalc< T >::Hem, osc::analytic::_OscCalc< T >::Het, osc::analytic::_OscCalc< T >::Hmm, osc::analytic::_OscCalc< T >::Hmt, osc::analytic::_OscCalc< T >::Htt, P, r(), osc::analytic::_OscCalc< T >::s12, osc::analytic::_OscCalc< T >::s13, osc::analytic::_OscCalc< T >::s23, osc::analytic::_OscCalc< T >::sCP, sincos(), sqr(), std::sqrt(), T, getGoodRuns4SAM::t0, getGoodRuns4SAM::t1, t2, osc::analytic::_OscCalc< T >::Ue2, osc::analytic::_OscCalc< T >::Ue3, osc::analytic::_OscCalc< T >::Um2, osc::analytic::_OscCalc< T >::Um3, osc::analytic::_OscCalc< T >::Ut2, and osc::analytic::_OscCalc< T >::Ut3.
236 const T r =
acos(q/(2*p*s)) / 3;
244 const T t0 = 2*s*cosr;
248 return {t0 -
b, t1 -
b, t2 - b};
void sincos(T &x, Eigen::ArrayX< U > *sx, Eigen::ArrayX< U > *cx)